1. Speckle de Onda de Matéria em um Fluido Quântico

    Nas últimas décadas, progressos significativos têm sido alcançados na criação e na manipulação de ondas de matéria: observação da difração de Fresnel, realização de lasers de átomos, e investigação da ótica atômica não-linear são alguns exemplos nesta linha. Embora a propagação de ondas de matéria em potenciais desordenados tenha sido bastante investigada, poucos trabalhos estudaram a presença de desordem dentro das ondas de matéria.

    Neste estudo experimental, foi analisada a desordem impressa num condensado de Bose-Einstein (BEC). Foram reportados os resultados da comparação direta entre um condensado turbulento em expansão livre e a propagação de um padrão de speckle ótico. Obtiveram-se propriedades estatísticas notavelmente similares para ambos fenômenos. A função de correlação de segunda ordem e o comprimento de correlação típico de cada sistema foram usados para fundamentar as observações. Acredita-se que a analogia entre um gás quântico turbulento em expansão e a difração de um speckle ótico poderá contribuir a abrir um novo campo de pesquisa: a investigação do desordem nos estados quânticos da matéria.

    Este trabalho foi publicado na revista PNAS com o titulo “Matter wave speckle observed in an out-of-equilibrium quantum fluid” em Novembro 2017. Ele resultou de uma colaboração entre o grupo experimental do Prof. Vanderlei Bagnato (USP-São Carlos) e os Prof. François Impens (Instituto de Física da UFRJ) e Prof. Robin Kaiser (INLN de Nice, França) para a parte teórica.

    http://www.pnas.org/content/early/2017/11/09/1713693114.abstract

    A Figura mostra o perfil da função de correlação normalisada C^(2)(r)=g^(2)(r)-1 para um condensado de Bose-Einstein com o sem turbulência, para um feixe ótico coerente e para um speckle ótico.

  2. Desbalanço de spin em átomos frios fermiônicos em redes óticas

    Aplicar campos magnéticos intensos à matéria pode dar origem a novos e inesperados fenômenos. Isto é particularmente verdade a temperaturas muito baixas, onde a natureza quântica das partículas em um material se torna importante e na presença de fortes interações entre as partículas. Em um artigo recente publicado na revista Science, o grupo experimental do Prof. Waseem Bakr de Princeton  com o suporte teórico de pesquisadores de Princeton, San Jose State University, Ohio State University, e da UFRJ estudou o comportamento de átomos em um cristal sintético nessas condições extremas: campos intensos, baixas temperaturas e fortes interações e encontrou um interessante comportamento magnético no sistema conhecido como  canted antiferromagnetism  (antiferromagnetismo inclinado). O trabalho teórico realizado na UFRJ foi feito pela Profa. Thereza Paiva.

    Os experimentos começam com o resfriamento de um gás de átomos de  Lítio a temperaturas de poucos nano Kelvins para chegar em um gás de Fermi degenerado. Os átomos estão em dois estados hiperfinos diferentes (chamados de spin para cima e spin para baixo) e são colocados em uma rede ótica e  com um desbalanço entre as populações.  Usando um microscópio de gás quântico de alta resolução foi possível imagear individualmente os átomos e estudar as mudanças nas correlações magnéticas com o desbanco de populações, equivalente a um campo magnético efetivo aplicado. Observou-se que, quando há um átomo por sítio da rede, as correlações magnéticas são maiores ao longo da direção perpendicular ao campo efetivo aplicado, formando o chamado canted antiferromagnet.

    A resposta magnética quando o sistema tem menos de um átomo por sítio também foi estudada. A polarização local varia de forma não monotônica com a dopagem e tem comportamento semelhante a da susceptibilidade magnética nos curatos no estado normal.  Isso sugere que o modelo sintético criado neste experimento (o modelo de Hubbard fermiônico) é de fato relevante para a compreensão da Supercondutividade de Alta Temperatura.

  3. Origem Extragalática de Raios Cósmicos de Alta Energia

    Mapa em coordenadas galácticas exibindo o fluxo de raios cósmicos com energias superiores a 8×1018 eV (~ 1,3 Joules). O centro da Via Láctea está na origem do sistema de coordenadas e o plano galáctico é representado pela linha pontilhada horizontal que passa pelo centro da figura. A cruz indica a direção do excesso de fluxo medido e as linhas cheias delimitam os contornos a 68% e 95% de nível de confiança.

    Em um trabalho publicado na revista Science em 22 de setembro, a Colaboração Pierre Auger reporta evidências observacionais de que raios cósmicos com energias um milhão de vezes maior do que a dos prótons acelerados no Grande Colisor de Hádrons (LHC) no CERN vêm de muito mais longe do que da nossa galáxia. Desde a confirmação experimental da existência de raios cósmicos com energias da ordem e mesmo maior do que 1019 eV nos anos 1960, muito se tem especulado acerca da origem galáctica ou extragaláctica dessas partículas. O mistério de meio século foi solucionado estudando partículas cósmicas de energia média 1019 eV (~2 Joules) detectadas no maior observatório de raios cósmicos já construído, o Observatório Pierre Auger, na Argentina. A observação consiste em comparar o fluxo de raios cósmicos vindos de uma metade do céu com aquele originário do lado oposto. O recente resultado mostrou que a essas energias a taxa média de chegada de raios cósmicos é cerca de 6% maior para aqueles vindos de um lado do céu do que para os que vêm do lado oposto, o excesso apontando para uma região distante 120° do centro da galáxia.

    A colaboração Auger está formada por mais de 400 cientista de 18 países, entre os quais o Brasil. Na UFRJ, no Instituto de Física, o professor João Torres de Melo Neto e a professora Carla Bonifazi são membros dessa colaboração e vêm trabalhando nos estudos de direção de chegada dos raios cósmicos há muitos anos. Também participou do trabalho a doutoranda Cynthia Ventura, do Observatório do Valongo.

    Raios cósmicos são núcleos de elementos desde o hidrogênio (o próton) até o ferro. Acima de 1019 eV, eles chegam ao topo da atmosfera na razão de apenas um por quilômetro quadrado por ano, o que corresponde a uma partícula por século sobre a área de um campo de futebol. Podemos detectar essas partículas tão raras porque, ao entrarem na nossa atmosfera, elas produzem cascatas de elétrons, fótons e múons (uma partícula semelhante ao elétron, porém 200 vezes mais pesada) através de suas sucessivas interações com os núcleos do ar. Tais cascatas, também chamadas de chuveiros atmosféricos, descem na atmosfera com uma velocidade praticamente igual à da luz em uma estrutura semelhante a um disco com vários quilômetros de diâmetro. Os chuveiros contêm mais de dez bilhões de partículas e são detectados no Observatório Auger através da luz Cherenkov que as partículas produzem ao atravessarem alguns dos 1600 detectores contendo 12 toneladas de água e espalhados sobre 3000 km2 na Argentina, uma área equivalente a 2,5 vezes a área da cidade de Rio de Janeiro. Os tempos de chegada das partículas nos detectores são medidos usando receptores GPS e são usados para encontrar as direções de chegada dos chuveiros com uma precisão de aproximadamente 1˚.

    Estudando a distribuição das direções de chegada de mais de 30.000 partículas cósmicas, a Colaboração Auger descobriu que essas partículas não chegam de todas as direções igualmente, e que há um claro desvio da uniformidade sobre o céu. Os físicos chamam este efeito de anisotropia. O efeito observado tem uma significância de 5,2 desvios padrão, correspondendo a uma probabilidade de ter sido observada por acaso de aproximadamente 2×10-8 (apenas duas partes em cem milhões, o que seria aproximadamente a probabilidade de ganharmos na Mega-Sena se apostarmos em seis números). A direção da anisotropia aponta para uma região do céu em que a distribuição de galáxias mostra uma densidade maior do que a média. Embora o resultado evidencie claramente a origem extragaláctica das partículas, o estudo não permite identificar individualmente as fontes. A direção da anisotropia aponta para uma área extensa no céu e não para uma região localizada e estreita, uma vez que mesmo partículas tão energéticas ainda têm suas trajetórias desviadas de ao menos algumas dezenas de graus pela ação dos campos magnéticos presentes na nossa galáxia e no espaço intergaláctico. Se considerarmos qualquer configuração realista do campo magnético galáctico conforme o conhecemos hoje, a direção da anisotropia não pode ser explicada assumindo que as fontes estejam situadas no plano da nossa galáxia ou mesmo no centro da nossa galáxia.

    Sabemos que existem raios cósmicos de energias ainda maiores do que aqueles incluídos nesse estudo, com alguns atingindo até a energia de uma bola de tênis bem rebatida. Como as deflexões sofridas por essas partículas nos campos magnéticos são menores para energias crescentes, suas direções de chegada à Terra devem apontar para regiões mais próximas de seus lugares de origem. Estes raios cósmicos são ainda mais raros e estudos adicionais estão em andamento procurando identificar quais objetos astrofísicos são, de fato, as suas fontes. O conhecimento da natureza das partículas, em particular de sua carga elétrica e massa, irá ajudar na identificação dessas fontes. Para aumentar a capacidade do Observatório Auger de caracterizar as partículas que chegam até nós, o Observatório está sendo aprimorado com a instalação de novos detectores e equipamentos e planeja-se que continue tomando dados até 2025. Os novos resultados a serem obtidos deverão ajudar a responder as questões ainda em aberto.

    Referência:

    “Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV”

    The Pierre Auger Collaboration

    Science 22 Sep 2017

    Vol. 357, Issue 6357, pp.  1266-1270

    DOI: 10.1126/science.aan4338

  4. Estrutura Hiperfina da Antimatéria

    Em artigo publicado na revista Nature em 03 de agosto, a Colaboração ALPHA no CERN (Centro Europeu de Física de Partículas) descreve a primeira medida da constante de estrutura hiperfina do átomo de antihidrogênio. A estrutura hiperfina do átomo de hidrogênio dá a grandeza da interação magnética do núcleo (próton no caso de hidrogênio ou antipróton no caso de antihidrogênio) com o elétron (ou pósitron no caso do anti-átomo). Em hidrogênio, na ausência de campos magnéticos ela é responsável pela abundante radiação de microondas emitida nos meios interstelares em 21 cm, ou 1,4 GHz.  Na presença de campo magnético a energia (ou frequência) da transição depende do campo magnético onde o átomo se situa. Com o recente aprisionamento magnético de anti-hidrogênio a Colaboração ALPHA começou um programa de medidas de alta precisão no anti-átomo para testar uma teoria básica da Física que prevê que o anti-átomo deve ser idêntico ao átomo. Embora a armadilha magnética tenha um campo que varia no espaço, uma garrafa magnética, a Colaboração explorou o fato de que há um campo mínimo por onde os átomos podem passar, e assim, há um valor mínimo de frequência onde os átomos começam a interagir com as microondas. Realizando a medida de duas diferentes configurações de spin a colaboração obteve a medida da constante hiperfina do antihidrogênio em 4 partes em 10000, compatível com o valor em hidrogênio. O grupo, de 54 cientistas e que conta com 4 brasileiros sendo 3 professores do Instituto de Física – Profs. Cláudio Lenz Cesar, Rodrigo Lage Sacramento e Daniel de Miranda Silveira – parte agora em 2017 para uma medida do espectro ótico do antihidrogênio na região do ultravioleta, em 243 nm, onde espera obter uma medida da frequência com 12 algarismos significativos. Para realizar essa transição ótica é necessário o aumento da potencia do laser numa cavidade ótica ressonante que foi idealizada e construída pelo grupo brasileiro. Em 12 casas decimais na comparação de antihidrogênio com hidrogênio  abre-se a possibilidade de observação de uma possível assimetria entre matéria e antimatéria. Essa jornada busca  entender um dos maiores mistérios da Física: por que o Universo não contém antimatéria primordial. Se o antihidrogênio vai  nos mostrar medidas iguais à do hidrogênio nos próximos avanços desse grupo, só a natureza pode responder. Para realizar medidas de mais alta precisão o grupo brasileiro desenvolve a técnica necessária para o aprisionamento de hidrogênio na mesma armadilha que o antihidrogênio. Se as medidas derem diferentes, mesmo que somente em 13,  14 ou 15 casas decimais, isso representaria uma revolução na Física. Se as medidas forem compatíveis, continua o mistério: qual o fim da antimatéria primordial e como sobrou tanta matéria!?

  5. Força de Casimir entre plano e esfera

    Na eletrodinâmica quântica, o vácuo quântico é o estado de mais baixa energia do campo eletromagnético. O vácuo exibe flutuações quânticas de ponto zero, relacionadas ao princípio da incerteza de Heisenberg, que dão origem a uma força de interação entre superfícies materiais muito próximas. Este efeito foi previsto pelo físico holandês Hendrik Casimir em 1948. Como exemplo, Casimir derivou a força de atração entre duas superfícies metálicas planas paralelas.

    Desde então, várias demonstrações experimentais da força de Casimir foram realizadas. Nos experimentos mais precisos, uma das superfícies planas é substituída por uma superfície esférica, de forma a evitar erros sistemáticos relacionados à ausência de paralelismo entre as superfícies em interação. Até o presente, a análise teórica dos resultados experimentais se restringiu ao uso da aproximação de força de proximidade, em que o resultado para a geometria plano-esfera é obtido a partir da expressão para planos paralelos tomando uma média sobre a distância local.

    Resultados exatos para condições experimentais típicas foram publicados recentemente na revista Physical Review Letters, com destaque dos editores da revista. O trabalho foi realizado pelos pesquisadores Michael Hartman e Gert-Ludwig Ingold da Universidade de Augsburg, e Paulo A. Maia Neto do Instituto de Física da UFRJ, no quadro de um projeto CAPES-Probral-DAAD de colaboração internacional Brasil-Alemanha. Os resultados apresentados sugerem uma nova direção para o debate sobre o papel da dissipação ôhmica no efeito Casimir.

    Para saber mais, veja a página da revista

    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.043901

    ou o banco de preprints arxiv

    http://lanl.arxiv.org/abs/1705.04196

  6. Fótons escuros no experimento DAMIC

    Resultados observacionais em astronomia, astrofísica e cosmologia  apresentam fortes evidências da existência de matéria escura.  A determinação da identidade da matéria escura é um dos mais importantes problemas da física contemporânea.  Um candidato para a matéria escura são os “fótons escuros”, partículas similares aos fótons comuns que compõem a luz e que podem ser absorvidos por elétrons em semicondutores como o silício.  Em artigo publicado dia 7 de Abril (https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.141803) pesquisadores do experimento DAMIC (Dark Matter in CCDs)  apresentam os resultados da procura por estes fótons escuros em um experimento usando CCDs (“charged coupled detectors”)  muito semelhantes aos que existem em celulares e que são feitos de silício.  O experimento foi realizado numa mina a 2000 metros embaixo da superfície da Terra no Canadá (para filtrar os raios cósmicos).   O artigo apresenta os melhores vínculos  medidos diretamente sobre os fótons escuros de massa entre 3 e 12 eV.  Adicionalmente, um dos aspectos mais interessantes do artigo é a possibilidade de detecção de sinais de ionização minúsculos.   Do Instituto de Física participaram o professor João Torres de Mello Neto, o pós-doutorando Diego Torres e os doutorandos Xiaohao You e Victor Braga Mello em colaboração com cerca de trinta colegas de doze  instituições em sete países que compõem a colaboração DAMIC.  Diante do sucesso da técnica experimental está em andamento a ampliação do detector para torná-lo ainda mais sensível à matéria escura. 

  7. Trabalho do Mestrado PEF é um dos mais lidos do American Journal of Physics

    O artigo recém publicado no American Journal of Physics, “Is the tautochrone curve unique?”, assunto da dissertação de mestrado em ensino de física de Pedro Terra, orientado por Carlos Farina e Reinaldo Mello e Souza, está anunciado pelos editores da revista como um dos mais lidos.

  8. Transição 1s-2s no antihidrogênio

    Colaboração ALPHA lança primeira luz (laser) sobre antimatéria! Em artigo publicado hoje (19/12/2016) na revista Nature (http://dx.doi.org/10.1038/nature21040) o grupo demonstra a primeira excitação de um anti-átomo com luz laser. A frequência da transição 1s-2s em antihidrogênio é compatível com a do hidrogênio em partes em 1010.
    Iniciar esse estudo de espectroscopia em alta resolução foi o objetivo inicial do grupo há 19 anos, que fez os primeiros átomos de antimatéria frios em 2002 (na colaboração então chamada ATHENA), e em 2010 realizou o primeiro aprisionamento desses.  Esse experimento teve participação fundamental de brasileiros da UFRJ, os profs. Claudio Lenz Cesar e Daniel de Miranda Silveira e os ex-alunos Rodrigo Lage Sacramento e Bruno Ximenez Alves. O grupo acredita que já em 2017 será possível obter um espectro completo nessa transição o que deve permitir uma comparação entre antihidrogênio e hidrogênio em partes em 1012 e além. Cabe ao futuro dizer até onde a simetria de CPT (que prevê uma equivalência entre matéria e antimatéria) vai se confirmar. Em breve essas medidas com antihidrogênio adentram precisão em medidas de energia nunca antes realizadas na comparação matéria X antimatéria. Uma falha em CPT poderia conter a explicação para um dos maiores mistérios da Física atual: a ausência de antimatéria primordial no Universo. O grupo brasileiro busca alunos interessados em participar dessa pesquisa.
  9. Mosaico IF

    O Mosaico IF, dia de palestras do nosso instituto, está chegando (quinta, dia 15/12, de 8h50 às 17h00). Confira o cronograma e a lista de pôsteres que serão apresentados.

    Cronograma

    Sessão de Pôsteres

    Contamos com a presença de todos docentes e alunos !

  10. Estudante do Mestrado Profissional em Ensino é premiado no III Prêmio de Educação Científica

    O prof. Hercílio Pereira Cordova, aluno do Mestrado Profissional em Ensino de Física do IF-UFRJ (defendeu sua dissertação no dia 7/11/2016), foi agraciado no III Prêmio de Educação Científica – Ensino Médio – Física pelo projeto “Estudo das condições térmicas da sala de aula”.

    O projeto foi desenvolvido no Colégio Estadual Pro
    fessor José de Souza Marques, com uma turma de 2o ano do ensino médio. Os estudantes realizaram medidas sobre as variáveis temperatura, umidade de ar e velocidade do ar utilizando “kit térmico” composto por uma placa Arduíno e sensores, durante um período de tempo, e a partir dos resultados obtidos por eles discutiram as condições térmicas na sala de aula.

    O Prêmio de Educação Científica é uma iniciativa da BG Brasil, subsidiária da Royal Dutch Shell plc., em parceria com a Secretaria Estadual de Educação do Rio de Janeiro.

    http://www.premiodeeducacaocientifica.com/

    A premiação 2016 ocorrerá no dia 15/12, no Museu do Amanhã.