Aplicar campos magnéticos intensos à matéria pode dar origem a novos e inesperados fenômenos. Isto é particularmente verdade a temperaturas muito baixas, onde a natureza quântica das partículas em um material se torna importante e na presença de fortes interações entre as partículas. Em um artigo recente publicado na revista Science, o grupo experimental do Prof. Waseem Bakr de Princeton com o suporte teórico de pesquisadores de Princeton, San Jose State University, Ohio State University, e da UFRJ estudou o comportamento de átomos em um cristal sintético nessas condições extremas: campos intensos, baixas temperaturas e fortes interações e encontrou um interessante comportamento magnético no sistema conhecido como canted antiferromagnetism (antiferromagnetismo inclinado). O trabalho teórico realizado na UFRJ foi feito pela Profa. Thereza Paiva.
Os experimentos começam com o resfriamento de um gás de átomos de Lítio a temperaturas de poucos nano Kelvins para chegar em um gás de Fermi degenerado. Os átomos estão em dois estados hiperfinos diferentes (chamados de spin para cima e spin para baixo) e são colocados em uma rede ótica e com um desbalanço entre as populações. Usando um microscópio de gás quântico de alta resolução foi possível imagear individualmente os átomos e estudar as mudanças nas correlações magnéticas com o desbanco de populações, equivalente a um campo magnético efetivo aplicado. Observou-se que, quando há um átomo por sítio da rede, as correlações magnéticas são maiores ao longo da direção perpendicular ao campo efetivo aplicado, formando o chamado canted antiferromagnet.
A resposta magnética quando o sistema tem menos de um átomo por sítio também foi estudada. A polarização local varia de forma não monotônica com a dopagem e tem comportamento semelhante a da susceptibilidade magnética nos curatos no estado normal. Isso sugere que o modelo sintético criado neste experimento (o modelo de Hubbard fermiônico) é de fato relevante para a compreensão da Supercondutividade de Alta Temperatura.