Ânions frios de hidrogênio, H– (hidrogênio com um elétron extra), são de grande interesse para pesquisa com antihidrogênio (anti-H) desenvolvida na colaboração internacional ALPHA, no CERN, da qual o grupo LASER é fundador. A colaboração ALPHA realizou a medida mais precisa sobre antimatéria, com 12 algarismos significativos, por espectroscopia a laser na transição 1S-2S do anti-H[1,2]. Carregar H na mesma armadilha magnética de anti-H[3], uma das motivações desse trabalho, permitirá à colaboração comparações entre matéria e antimatéria com maior precisão. A medida testa a simetria fundamental da Física chamada CPT (conjugação de carga, paridade e reversão temporal), na busca de descobrir mecanismos que expliquem a ausência de antimatéria
primordial no Universo, por exemplo. Uma amostra de H– pode ser produzida e aprisionada, num equipamento similar ao da UFRJ reproduzido no CERN, e depois guiada para dentro da armadilha de anti-H do ALPHA. Em seguida, os H– podem ser tornados neutros pela extração do elétron extra por meio de pulsos de laser, num processo que resulta em baixa energia de recuo ao átomo neutro, gerando uma amostra neutra fria e permitindo assim seu aprisionamento magnético na armadilha do ALPHA.
Outra possível aplicação em física fundamental é a produção de T– (trício, um isótopo de H com um próton e 2 neutrons em seu núcleo). O T decai radioativamente emitindo um ?– (elétron) e um antineutrino. Numa proposta de um grupo internacional, Project-8, eles medem a energia individual de cada ?– emitido dentro de um campo magnético por emissão de radiação cyclotron em microondas [4,5]. Se tivessem uma fonte muito intensa de T frio, quase aprisionado, para medir as máximas energias dos ?– (final da distribuição de energia), poderiam determinar a massa de repouso do antineutrino. A produção de T– e T frios a partir desse trabalho com a técnica MISu poderia se constituir nessa fonte intensa de átomos, no entanto, embora a técnica da UFRJ seja escalável, só com os próximos desenvolvimentos do trabalho se saberá por quantas ordens de grandeza o número de ânions aprisionados pode ser aumentado.
O grupo também observou a formação de feixe de elétrons pela aplicação de potencial eletrostático repulsivo na matriz. O resultado abre a possibilidade de produção de feixes de elétrons com spin polarizado a baixas energias, com potencial para estudar processos moleculares ligados à origem da homoquiralidade das moléculas biológicas [6,7]. Tais estudos possibilitariam entender processos que levaram ao surgimento da vida. Além disso, trabalhos recentes [8,9] mostram potencial de uso de elétrons como quantum-bits, elementos de computação quântica; em particular com longos tempos de descoerência em manipulações quânticas para elétrons adsorvidos na superfície de Ne sólido, exatamente o tipo de matriz que o grupo utiliza na técnica de MISu. Dessa forma, há possibilidade de expansão desse trabalho na direção de q-bits eletrônicos.
A demonstração de produção de e–, H±, Li± e moléculas do tipo LinHm± nesse trabalho, junto a resultados anteriores publicados pelo grupo, é uma prova de princípio que funcionaria também com T±, D± e diversas espécies atômicas e moleculares. A técnica, portanto, possibilita aplicações em áreas como físico-química e astrofísica [10].
O grupo agora se dedica a otimizar o processo de produção e aprisionamentos dos íons e elétrons, aumentando o número de partículas aprisionadas e buscando energias típicas bem abaixo de 25 meV (equivalente à temperatura ambiente). Uma nova versão da armadilha, em construção, com acesso óptico e possibilidade de detecção simultânea de cargas positivas e negativas, permitirá estudos por espectroscopia a laser de íons aprisionados e produção de moléculas em baixas temperaturas a partir de cátions e ânions frios.
O projeto foi concebido e apoiado por um edital Temático da FAPERJ. Como ideia nova, sem nenhum outro resultado desse tipo de produção de ânions frios a nível mundial, havia riscos (científicos) na proposta. Naquela ocasião, os referees apoiaram esse risco.
O artigo é assinado pelos pesquisadores: Levi Oliveira de Araújo Azevedo (doutorando), Rodolfo de Jesus Costa (aluno do programa de mestrado aplicado multidisciplinar), Dr. Álvaro Nunes de Oliveira (INMETRO/IF-UFRJ), e Professores Rodrigo Lage Sacramento, Daniel de Miranda Silveira, Wania Wolff e Cláudio Lenz Cesar. Para maiores informações visite a página do LASERIF-UFRJ (https://www.if.ufrj.br/~lenz/Lab/laserHome.html). O grupo busca potenciais colaboradores (incluindo estudantes) para os desafios científicos que a técnica oportuniza.
Referências
[1] Ahmadi, M. et al. [ALPHA collab.], Characterization of the 1S-2S transition in antihydrogen. Nature 557, 71 (2018) (open access)
[2] Baker, C. J. et al. [ALPHA collab.], Laser cooling of antihydrogen atoms. Nature 592, 35
(2021) (open access)
[3] C. L. Cesar, A sensitive detection method for high resolution spectroscopy of trapped
antihydrogen, hydrogen and other trapped species. J. Phys. B 49, 074001 (2016)
[4] Asner, D. M. et al. Single-electron detection and spectroscopy via relativistic cyclotron
radiation. Phys. Rev. Lett. 114, 162501 (2015)
[5] Formaggio, J. A., de Gouvêa, A. L. C. & Robertson, R. G. H. Direct measurements of neutrino mass. Phys. Rep. 914, 1 (2021)
[6] M. Kettner et al., Chirality-Dependent Electron Spin Filtering by Molecular Monolayers of
Helicenes, J. Phys. Chem. Lett. 9, 2025 (2018) (open access)
[7] Stefan Mayer and Joachim Kessler, Experimental Verification of Electron Optic Dichroism, Phys. Rev. Lett. 74, 4803 (1995)
[8] Dapor, M. Polarized electron beams elastically scattered by atoms as a tool for testing
fundamental predictions of quantum mechanics. Sci. Rep. 8, 5370 (2018) (open access)
[9] X. Zhou, G. Koolstra, X. Zhang et al. Single electrons on solid neon as a solid-state qubit platform. Nature 605, 46 (2022) (open access)
[10] A. Dalgarno and R. A. McCRAY, The formation of interstellar molecules from negative ions, Astrophys. J. 181, 95 (1973)