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Nonlinear coherent states of trapped-atom motion
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The general character of nonlinear coherent states~NCS! is considered. A method is introduced by which
any pure state of the quantum harmonic oscillator can be represented in a limiting sense as a NCS. The
representation of a Fock state as a NCS is discussed in detail. As a physical example we show how to prepare
a highly excited Fock state in an ion trap based on the concept of NCS.
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I. INTRODUCTION

Nonclassical states of the electromagnetic field and of
atomic center-of-mass motion have played an important
in recent years, due to their relation with fundamental pr
lems in quantum mechanics and to the many possible ap
cations, ranging from high-resolution spectroscopy to lo
noise communication and quantum computation. Howe
the generation of these states is usually a demanding ex
mental challenge. One of the most difficult tasks is the s
pression of decoherence effects originating from the inte
tion of the quantum system under consideration with
environment. A particularly important system, where su
decoherence effects can be suppressed to a level that a
one to prepare interesting quantum states, is compose
one or several trapped ions. In an ion trap the center-of-m
of a single ion experiences an approximate harmonic ex
nal potential@1#, hence the ion trap is a realization of th
harmonic oscillator model in quantum mechanics. Ion tr
ping inspired the development of laser cooling techniq
such as ‘‘Doppler’’ laser cooling@2–4# and laser cooling in
the resolved sideband limit@4#, which allows one to prepare
the ion in the vibrational ground state@5,6#.

Making use of the momentum exchange between the a
and a driving light field, one can manipulate the atom
center-of-mass motion. In this manner, experiments h
been performed that realize examples of squeezed states
tional number states@7#, and Schro¨dinger-cat-like states@8#.
These state-preparation methods typically rest on cohe
interactions of the trapped atom with lasers that are ap
priately tuned on particular vibronic transitions. Clearly su
methods are limited by the decoherence mechanisms a
on the system. Since the decoherence effects become
important with increasing interaction time, the preparation
highly excited nonclassical states is expected to be diffic
For example, motional Fock statesun& have been experimen
tally prepared by sequences ofn interactions withp pulses
@7#. Thus the minimum required preparation time consists
n/2 Rabi cycles. On the other hand, in the experiment
significant damping of Rabi oscillations was observed o
time scale of several Rabi cycles. This decoherence is
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pected to substantially reduce the fidelity of Fock states p
pared by this coherent scheme in cases where the qua
numbers are significantly larger thann510.

To avoid the degradation of highly excited nonclassi
states, one needs clear insight into the underlying deco
ence mechanisms. In the case of the above experiments
dominant source of decoherence of the Rabi oscillations,
an atom initially prepared in the motional ground state, h
been shown to consist of rarely occurring spontaneous e
sions from an auxiliary~far off resonant! electronic state tha
is used to enhance the Raman coupling strength of the la
providing the coherent Rabi flopping@9#. Among the numer-
ous experimental proposals for the generation of nonclass
motional states of a trapped ion, a remarkable class invo
the generation of motional dark states. In this context
spontaneous emission, which usually limits the possibilit
of coherent quantum-state preparation, serves a useful
pose: it is actually needed for preparing and stabilizing
nonclassical state under study. There are several theore
proposals dealing with motional dark states that realize
type of dynamics, including squeezed states@10#, even and
odd coherent states@11#, nonlinear coherent states~NCS!
@12#, and squeezed cat states@13#. Similarly, the generation
of multimode entangled states as dark states could be als
practical importance. In this spirit, the preparation of p
coherent states@14#, pair cat states@15#, and approximate
SU~2! states@16# have already been considered.

Out of the variety of dark states that can be realized,
the following we will be particularly interested in the NCS.
turns out that several notable states in quantum optics ca
represented as NCS. For their properties see, e.g., R
@17,18#. Some special cases that have been considered
the q-deformed coherent states@19,20#, the photon added
coherent states@21# and the negative binomial states@22#.
Several properties of the even and odd NCS have been
cussed in Ref.@23#, see also Ref.@24#. Other types of NCS
have been considered in Refs.@25–27#. Whereas the prepa
ration of some of the motional dark states is limited to t
Lamb-Dicke regime, the NCS are insensitive even to
motional kick effects that become more and more import
for large Lamb-Dicke parameters@12#. Thus their prepara-
tion in the form of dark states opens new possibilities
preparing highly excited nonclassical states that are alm
undisturbed by spontaneous emission.

In the present paper we deal with the question of h
ics
©2001 The American Physical Society01-1
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general the NCS are. We introduce explicitly a method
which, in a limiting sense, any pure state of the harmo
oscillator can be represented as a NCS. As an extreme
ample, we show that even the Fock states—although the
not display any coherence properties—belong to the clas
NCS. Finally, we demonstrate by numerical simulations
the dark-state preparation method that the generation
highly excited motional Fock states of a single trapped i
such as the stateun560&, is possible by making use of th
concept of NCS.

This paper is organized as follows. In Sec. II the ma
properties of deformed harmonic oscillators are discuss
The definition of the deformed commutator relation and
coherent states associated with the deformed boson oper
are summarized briefly in Sec. II A. In Sec. II B an importa
physical realization of the deformed boson operators is
called, where the physical system is a single trapped
driven by two laser fields and the spontaneous decay of
electronic state is included. It is shown in Sec. III that pu
states of the harmonic oscillators can always be represe
as NCS. In Sec. IV two representations of a Fock state
NCS are compared. The generation of a highly excited F
state in an ion trap based on the concept of NCS is studie
Sec. V. A summary and some conclusions are given in S
VI.

II. DEFORMED HARMONIC OSCILLATOR

A. Deformed commutation relation

Deformations of the canonical commutation relatio
have been proposed since the early days of quantum mec
ics @28#. For the harmonic oscillator, the usual creation a
annihilation operatorsâ† and â are replaced by deforme
boson operatorsÂ† and Â, respectively@29–31#. A number
operatorn̂ is also postulated which counts the quanta:n̂un&
5nun&. The set$un&;n50,1, . . .% provides a denumerabl
basis for the Hilbert space~Fock space!. The number opera
tor satisfies

@ n̂,Â#52Â and @ n̂,Â†#5Â†, ~1!

as for the usual nondeformed boson operators. Note tha
this definition one does not requireÂ andÂ† to be related to
n̂ in the usual way, i.e., in generalÂ†ÂÞn̂. The vacuum state
u0& does not contain quanta, thereforen̂u0&50 and Âu0&
50. The productÂ†Â preserves the number of quanta, co
sequently it is necessarily a function ofn̂. A convenient no-
tation of abox function is introducedÂ†Â5@ n̂# ~read ‘‘box
n̂’’ ! @17#. Similarly, ÂÂ† is also a function ofn̂ and it can be
shown thatÂÂ†5@ n̂11#. The deformed commutation rela
tion is defined by

ÂÂ†2Â†Â5@ n̂11#2@ n̂#. ~2!

One of the most important class of the deformed h
monic oscillator is theq-deformed oscillator. In case o
‘‘Maths’’ bosons
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ÂÂ†2qÂ†Â51, ~3!

whereq is some real number. This deformation was intr
duced in Ref. @29#, where the correspondingq-coherent
states, the eigenstates of theq-deformed annihilation opera
tor Â, were also discussed. An equivalent commutator fo
~2! of the definition~3! can be derived@17#, for which the
box function reads

@n#5
12qn

12q
. ~4!

The other most commonly used deformation of the co
mutation relation yields the ‘‘physics’’ bosons

ÂÂ†2qÂ†Â5q2n̂. ~5!

This (P-case! deformation of the boson operators@19# is a
realization of the Hopf algebras, or quantum groups@31#. For
the commutator form~2! of the definition~5! the box func-
tion is given by@17#

@n#5
sinh~ln!

sinhl
, l5 ln q. ~6!

The q-deformed oscillators may be considered as spe
cases of the so-calledf oscillators@18#, where thef-oscillator
operators have been defined by

Â5â f ~ n̂!,

Â†5 f ~ n̂!â†. ~7!

The function f (n) can be practically any real or complex
valued function. The basic commutator reads

@Â,Â†#5~ n̂11! f 2~ n̂11!2n̂ f 2~ n̂!. ~8!

It follows that @n#5n f 2(n). By the special choice of the
function f (n)

f ~n!5S sinh~ln!

n sinhl D 1/2

, l5 ln q ~9!

it has been shown that theq-deformed harmonic oscillator in
theP case@cf. Eq. ~5!# is a special case of the algebra of th
f-oscillator operators Eq.~7!. An important physical realiza-
tion of the f oscillators is the center-of-mass motion of
trapped ion where the electronic system of the ion is sub
to both radiative damping and resonant laser excitation
vibrational sidebands@12#.

The coherent states associated with the deformed an
lation operatorÂ, are defined as

Âum&5mum&, ~10!

wherem is some complex number. These generalized coh
ent states are well defined ifu@n#/m2u.1 whenn→`. A re-
1-2
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NONLINEAR COHERENT STATES OF TRAPPED-ATOM MOTION PHYSICAL REVIEW A64 033401
lated expression in quantum optics has been considere
Refs. @17,32#. The expansion of the stateum& in the Fock
basis is

um&5Nm (
n50

`
mn

A@n#!
un&, ~11!

@n#! 5@0#@1#•••@n#.

This solution of the eigenvalue equation~10! is very general,
it can be adopted for all deformed boson operators wh
satisfy the deformed commutation relations~1!,~2!. The
states of the form~11! are a generalization of the Fock re
resentation of the coherent state. For thef-oscillators these
states were also interpreted as NCS@12,18#. In the next sub-
section we discuss in more detail an ion trap system in wh
NCS emerge.

B. Nonlinear coherent states

The realization of a special class of NCS, correspond
to a special choice of the functionf̂ (n̂), has been proposed i
the quantized motion of a trapped atom in a Paul trap@12#.
We show in Fig. 1 the excitation scheme which will also
the basis for the generation of other types of NCS conside
in the following. Two lasers drive the atom simultaneously
the resolved sideband regime. The first one of frequencyv0
is resonant to the electronic carrier frequencyv21. The sec-
ond one of frequencyv r is on resonance with the first re
motional sideband,v r5v212n, wheren is the motional fre-
quency of the atom in the trap potential. Eventually, t
wavy line in the scheme indicates a radiative decay of
excited electronic state with a decay rateG.

The dynamics of the system can be described by the m
ter equation

d%̂

dt
52

i

\
@Ĥ int ,%̂#1

G

2
~2Â12%̂̃Â212Â22%̂2%̂Â22!.

~12!

The operatorsÂj i flip the electronic state fromu i & to
u j & ( i , j 51,2). Moreover,

FIG. 1. Excitation scheme of the trapped ion for the prepara
of a NCS.
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ds W~s!eihs(â1â†)%̂e2 ihs(â1â†) ~13!

includes the motional kick effects due to the emission
photons. The functionW(s) is the radiation pattern and th
Lamb-Dicke parameterh measures the localization of th
motional ground state of the atom relative to the~effective!
wavelength of the transition. The HamiltonianĤ int includes
the two driving laser fields, each of which is described by
nonlinear Jaynes-Cummings Hamiltonian@33#

Ĥ int5
\

2
$V rh r f 1~ n̂;h r !â1V0f 0~ n̂;h0!%Â211H.c.,

~14!

whereVq (q50,r ) are the Rabi frequencies correspondi
to the two laser fields, and

f i~ n̂;h!5e2h2/2(
n50

`
n!

~n1 i !!
Ln

( i )~h2!un&^nu, ~15!

Ln
( i )(x) being the associated Laguerre polynomial. Here

two Lamb-Dicke parameters are equal to each otherh r
5h0, since the laser fields propagate in parallel direction

The steady state of the laser driven and damped atom
the form

%̂s5u1&uc&^cu^1u. ~16!

Since the atom is in the ground state, the motional stateuc&
is obtained when the atom stops to fluoresce, thus the sys
is said to be in a motional dark state@12#. Different types of
motional dark states have been studied, such as sque
states@10#, even/odd coherent states@11#, pair coherent states
@14# and others. Driving the system according to the exc
tion scheme in Fig. 1 with two lasers of equal Lamb-Dic
parameters, the motional dark state shows up as a NCS@12#,

uc&[ux; f &, ~17!

which satisfies the eigenvalue equation

Âux; f &5xux; f &. ~18!

The deformed annihilation operatorÂ is defined by

Â5 f ~ n̂!â. ~19!

Note that this definition is equivalent to that of th
f-oscillator operators~7! since f (n̂)â5â f (n̂21). In the fol-
lowing we will use the notation ofÂ according to Eq.~19!,
which has the technical advantage of being in normally
dered form. In the ion trap system under consideration
obtains

x5
iV0

hV r
, f ~n!5

Ln
~1!~h2!

~n11!Ln
~0!~h2!

. ~20!

n

1-3
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Thus the eigenvaluex can be well controlled by the two
~complex! Rabi frequenciesV0 and V r of the two lasers.
The functionf (n) contains associated Laguerre polynomi
and it can be partly modified via its dependence onh. These
states may display interesting properties, such as ampli
squeezing and splitting into substates. In the latter case
nounced quantum interference effects can occur.

It would be of great interest if one could have more fre
dom to choose the form of the functionf (n) since in this
case the NCS would include a wide class of pure quan
states. A possible way to tailor the functionf (n) in the ion
trap is the engineering of the atom-laser interaction@34#. It
allows one to control the excitation dependent nonlineari
by increasing the number of lasers driving the system. W
the wave vectors of the lasers have different projections o
the motional degree of freedom of interest, the interactio
described by several Lamb-Dicke parameters that eventu
allow one to control to some extent the functionf (n).

III. NCS REPRESENTATION OF PURE STATES

In this section we study the conditions for a state to
long to the class of NCS. The solution of the eigenva
equation for the NCS@see Eq.~18!# can be expanded in
terms of Fock states

^nux; f &5N xn

An! f ~n21!!
, ~21!

where we define

f ~21!![1. ~22!

In order to express a stateuc& as a NCS one may compar
the Fock state expansion of the NCS in Eq.~21! with that of
the state

uc&5 (
n50

`

cnun&. ~23!

After some basic algebra one finds a relation between
Fock state coefficients of the state in question and the n
linear functionf (n) of the NCS,

f ~n!5
x

An11

cn

cn11
. ~24!

Inserting this function into Eqs.~18! together with Eq.~19!,
the resulting NCS is equal to the stateuc& in Eq. ~23!, pro-
vided thatf (n) is a well-defined function.

Now we discuss the existence of the NCS determined
the functionf (n) in Eq. ~24!. If all coefficientscn are non-
zero in the Fock state expansion of the stateuc& in Eq. ~23!
then f (n) is a well-defined function for alln>0. Certainly,
in the limit of n→` it should be allowed thatucnu→0, pro-
vided that the ratiosucn /cn11u remain finite. In other words
all the pure statesuc& whose Fock state coefficientscn are
nonzero for any finite value ofn belong to the class of NCS
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However, we encounter a problem if there are zeros in
expansion~23!. To be more specific, let us consider the ev
Schrödinger-cat state

uc&5
1

A ~ ua&1u2a&), A5A212 exp~22uau2!.

~25!

The Fock state coefficients of this state reads

cn5H 2

Ae2uau2/2
an

An!
, n is even,

0, n is odd.

~26!

As a result, we have a sequence of nonzero and zero co
cients. Inserting two consecutivecn from Eq. ~26! into Eq.
~24! we get either zero or infinity forf (n). Consequently, the
function f (n) is ill defined and the even Schro¨dinger-cat
state does not belong in a strict sense to the class of N
More generally, if in the Fock state expansion of a state th
are alternating zero and nonzero periods then the state
not belong in a strict sense to the class of NCS.

However, even if the functionf (n) is ill defined, it is
possible to construct a NCS, in the sense of a limit, wh
may represent any chosen pure state. For this purpose
will consider the typical difficulties that may emerge in th
NCS representation of an arbitrary pure state. In Fig. 2
show the modulus of the first few Fock state coefficients o
stateuc&. Difficulties arise when a nonzero Fock state co
ficient is followed by a zero one and vice versa, or if the
are two or more coefficients one after the other which
zeros. In order to overcome these problems we propos
truncate the Hilbert space at an arbitrarily large but fin
Fock stateuN&. The next step is to replace the zeros in t
Fock state expansion of the state in question by«/N where
«!1 and fixed. We are going to construct a functionf (n)
describing a stateux; f &N

ux; f &N5N(
n50

N
xn

An! f ~n21!!
un&, ~27!

FIG. 2. The modulus of the first few Fock state expansion
efficientscn of a stateuc&.
1-4
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NONLINEAR COHERENT STATES OF TRAPPED-ATOM MOTION PHYSICAL REVIEW A64 033401
which approximates the stateuc&N under consideration in the
truncated Hilbert space.

In the following we give an example of the rules regar
ing the choice of the functionf (n).

R1. cnÞ0 andcn11Þ0: apply Eq.~24!.
R2. cnÞ0 andcn1150: replacecn11 by «/N then

f ~n!5
x

An11

cn

«/N
. ~28!

R3. cn50 andcn11Þ0: replacecn by «/N then

f ~n!5
x

An11

«/N

cn11
, ~29!

R4.cn50 andcn1150: replace bothcn andcn11 by «/N
then

f ~n!5
x

An11
, ~30!

where cn , (n50 . . .N) are the Fock state coefficients o
the stateuc& in question. Note that the ruleR2 describes a
singularf (n) asN→`. The stateux; f &N does not satisfy the
eigenvalue equation~18!, instead we have

Âux; f &N5x~12uN&^Nu!ux; f &N , ~31!

where the last term on the right-hand side results from
truncation of the Hilbert space. AsN→` this term vanishes
since limN→`(12uN&^Nu)51.

It can be readily verified that if the functionf (n) satisfies
the rulesR12R4, then

uc&N'ux; f &N . ~32!

Taking the scalar product of both sides of this equation w
the Fock stateun&, (n50, . . . ,N), one finds exact agree
ment for^nuc&NÞ0. If on the left-hand sidênuc&N50 then
on the right-hand side one obtains^nux; f &N5«/N. For a
sufficiently largeN this number can be arbitrarily small. Th
norm of the stateux; f &N is

N^ f ;xux; f &N5N^cuc&N1k
«2

N2
, ~33!

wherek is the number of zeros out of the Fock state coe
cientscn , (n50, . . . ,N) of the stateuc&N . Sincek,N the
relationk«2/N2,«2/N holds, therefore the norm ofux; f &N
approaches 1 asN→`. Taking the limitN→` one has

uc&[ lim
N→`

uc&N5 lim
N→`

ux; f &N[ux; f &. ~34!

The last equation means that in the limit ofN→` the state
ux; f &N will be the NCSux; f &, which satisfies the eigenvalu
equation~18!. In this way the method yields a NCS which
equivalent to the state under consideration.
03340
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We should note that the method discussed above is no
only one by which an arbitrary stateuc& can be represente
as a limit of a NCS. Our intention is to demonstrate that su
a method can be constructed, and to consider the mathem
cal problems that arise in the course of the construction
such a method. In the next section we discuss a cas
particular interest, the representation of a Fock state a
NCS. For the Fock state all but one coefficientcn are van-
ishing. Moreover, they are known to display no coheren
properties. In this sense the Fock states may be expecte
be the most unlikely to belong to the class of NCS. It
interesting that, nevertheless, they can be represented in
form of NCS.

IV. REPRESENTING FOCK STATES AS NCS

In this section we will show that Fock states belong, a
limiting case, to the class of NCS. To represent a Fock s
the function f (m) should satisfy the condition@we denote
this function in the following byf «(m), in order to make
explicit the dependence on the parameter«]:

1

f «~n21!!
'H 1/«, n5k,

!1/«, nÞk, ~35!

where«!1 is a small number. In the NCS determined
this function f «

21(m) the coefficient of thekth Fock state
exceeds by orders of magnitudes all the others, hence
renormalization one gets with very good approximation
Fock stateuk&. Indeed, taking the limit«→0 one finds

lim
«→0

ux; f «&5uk&, ~36!

whereux; f «& is defined in Eq.~21!. Note, that in Eq.~36! the
limiting state is the Fock stateuk& for any finite, nonvanish-
ing value ofx. The function f «

21(m) could be realized by
choosing

f «
21~m!5

k2m2«

m2k111«
. ~37!

This function takes finite values form,k21, and for
«!1 it has an effective cutoff form>k.

So far we have dealt with the mathematical representa
of a Fock state as a NCS. However, it has been shown in
@35# that under ideal conditions a Fock state can be prepa
as a dark motional state of a trapped ion. In the propo
scheme the atom is driven by two lasers in different dir
tions, so that the Lamb-Dicke parameters on the carrier
the red sidebandsh0 and h r , respectively, can be varie
independently of each other. Expanding the steady stat
the system in the Fock basis Eq.~23!, from the master equa
tion ~12! together with the ansatz~16! one may derive the
recursion relation@35#

e2hr
2/2

Am11
Lm

(1)~h r
2!cm111xe2h0

2/2Lm
(0)~h0

2!cm50. ~38!
1-5
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Z. KIS, W. VOGEL, AND L. DAVIDOVICH PHYSICAL REVIEW A 64 033401
One may choose the LD parameterh0 such thatLm
(0)(h0

2)
50 for m5k. In this case the recursion relation ensures t
all coefficientscm vanish form.k. Moreover, one may fix
h r such thatLk21

(1) (h r
2)50. As a consequence allcm vanish

for m,k. The conclusion is that the only nonvanishing c
efficient isck and thus the steady state of the atomic mot
is thekth Fock state

uc&[uk&. ~39!

We emphasize that in order to get the Fock stateuk& as the
solution of the recursion relation~38!, the LD parameters
should be set with extremely high precision as we will s
later.

We point out that the states defined by the recursion r
tion ~38! are in fact nonlinear coherent states. In the gene
case of arbitrary values of the LD parameters the recurs
relation ~38! yields

uc&[ux; f &,

f 21~m!5
~m11!Lm

(0)~h0
2!

Lm
(1)~h r

2!
e(hr

2
2h0

2)/2. ~40!

By choosing the LD parameters according to the discuss
given above the NCS~40! is equivalent to the Fock stateuk&.
Since it is impossible in an experiment to fix precisely t
value of the LD parameters, it is of interest whether t
realization of Fock states as NCS becomes possible u
more realistic conditions.

So far we have discussed two representations of a F
state as NCS: one of them is derived from pure mathema
considerations@see Eqs~35!,~36!#, the other one represen
the motional state of an appropriately driven trapped ion@see
Eq. ~40!# under idealized conditions. We show now that the
two representations are similar to each other, but not equ
lent. Expanding the function for the trapped atom, Eq.~40!,
around the zeros chosen to get thekth Fock state, we arrive
at

f 21~m!}
Lm

(0)~h0
2!

Lm
(1)~h1

2!
'

a~m2k!1Lk
(0)~h0

2!

b~m2k11!1Lk21
(1) ~h r

2!
, ~41!

where we allow the LD parametersh0 and h r not to take
their precise values, i.e., the corresponding Laguerre poly
mials are not exactly equal to zero at these points. It can
seen that the expansion off 21(m) aroundm5k in Eq. ~41!
is a rescaled version off «

21(m) in Eq. ~37!. In Fig. 3 we
compare these two functions, which exhibit a similar beh
ior. Most importantly, they are strongly peaked atm5k,
which cannot be seen in the figure, since the height of
peaks could be even infinite in principle. Here we have c
senh0

2 and h r
2 such that they agree for 50 digits with th

precise lowest roots ofLk
(0)(x) andLk21

(1) (x), respectively.
In Fig. 4 we redisplayf 21(m) and f «

21(m) for a largerm
interval. The functionf «

21(m) behaves as expected, it b
comes constant far from its singularity. However, the fun
tion f 21(m) exhibits several peaks. These peaks emerge
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(1)(h r

2) is almost zero not only form5k21, but for
several larger values ofm too. Under the chosen condition
the heights of the secondary peaks are of the order of
hundreds compared to the value of 106 of the main peak. A
natural question arises: how sensitive are the results of
recursion relation~38!, or equivalently the NCS~40!, with
respect to the chosen precision of the calculation, and t
with respect to the precision of an experiment. Usi
MATHEMATICA @36#, we have evaluated Eq.~40! with the
extreme precision of 50 digits. The LD parametersh0 andh r
were chosen in such a way that their first 50 digits we
equal to the square root of the roots of the Laguerre poly
mials Lk

(0)(x) andLk21
(1) (x), respectively.

The result is shown in Fig. 5. It can be seen that
emerging state depends sensitively on the choice of the
genvaluex. In all cases we did not obtain the expected Fo
state, but a state which is a superposition of several F
states. This means that performing the calculations with e
extremely large but finite precision prevents us to obtain
Fock states as predicted by the recursion relation~38!. Con-
sequently, getting a Fock state with Eq.~40! is a mathemati-

FIG. 3. The behavior of the functionsf «
21(m) ~filled boxes! and

f 21(m) ~empty boxes! defined in Eqs.~37! and ~40!, respectively,
around their singularities. These functions correspond to the F
stateu30&.

FIG. 4. Same as Fig. 3 but for a longer interval.
1-6
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FIG. 5. The motional number
statisticsPn is shown for the sta-
tionary states resulting from the
recursion relation~38! for four
different values of the eigenvalu
x. The calculations were per
formed with 50 digits of precision.
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cally unstable procedure. This instability occurs in the de
mination of the steady state. In practice, however, the t
needed to approach this steady state may be extremely l
Thus, it may be possible, despite the instability of the ste
state, that in the laboratory one can actually prepare, thro
the NCS method, a highly excited Fock state as a quas
tionary state. The physical reason for this possibility resu
from the fact that the different regions of the Hilbert spa
contributing to the steady state are coupled very weakly
both the driving lasers and the momentum transfer on
atom due to spontaneous emission. In fact, we will show
it is possible to generate a Fock state in a laser-dri
trapped ion system by using the idea of independent ad
ment of the LD parameters of the carrier and sideband las
In the next section we discuss an experimental scheme
which the problems arising from the additional peaks
f 21(m) are avoided by effectively truncating the Hilbe
space of the system in the dynamics.

In an experiment the LD parameters cannot be contro
with arbitrary precision. From recent experiments it appe
to be reasonable that the LD parameters can be fixed wi
digits of precision@37#. This loss of accuracy may result in
significant mismatch between the roots of the Laguerre p
nomials and the squares of the LD parameters. The m
effect of this deviation is the diminution of the height of th
peak of the functionf 21(m) at m5k21, as one expects
from Eq. ~41!. The other peaks remain unaltered practica
The reduction of the important peak off 21(m) compared to
the others will decrease further the quality of the ‘‘Fo
state’’ which was supposed to be obtained from the recurs
relation ~38!.

V. GENERATION OF A FOCK STATE BASED ON THE
CONCEPT OF NCS

In the previous section we have compared two repres
tations of a Fock state as NCS. One of them being deri
from purely mathematical considerations, the other o
originating from the motional state of a trapped ion which
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driven by laser fields. We have demonstrated that the la
one is mathematically unstable due to the multipeak struc
of the function f 21(n) in Eq. ~40!. In this section we are
going to show that in spite of this instability, the ion ma
reach a highly excited Fock state in the NCS preparat
scheme, by making use of the dynamics of the ion toget
with appropriately chosen initial vibrational states and L
parameters.

The master equation governing the time evolution of
density operator%̂(t) of a trapped ion, which suffers spon
taneous decay of level 2, and is subject to a bichromatic la
excitation of Jaynes-Cummings type, has already been
cussed in Sec. II B and is redisplayed here for convenien

d%̂

dt
52

i

\
@Ĥ int ,%̂#1

G

2
~2Â12%̂̃Â212Â22%̂2%̂Â22!.

~42!

The recoil term%̂̃ in the dissipative part is defined in Eq
~13!. Similarly to the original idea for preparing NCS@12#
two laser fields are applied. One of them is tuned to
carrier frequency of the electronic transition and the ot
one is tuned to the first red vibrational sideband. Now the
parametersh0 andh r associated with the fields at the carri
frequency and at the first red vibrational sidebands, resp
tively, are chosen independently of each other by varying
direction of the laser fields. The HamiltonianĤ int is given by
Eq. ~14!. The stationary solution of the master equation~42!
has the form given in Eq.~16!, where the vibrational partuc&
is given in Eq.~40!.

In a numerical simulation the Fock space is necessa
truncated. If we look for the solution of the recursion relati
~38! in a truncated Fock space of dimensionN, provided that
N is between the first and second approximate singularity
the function f 21(m) @see Eq.~40!#, then the problem with
the multipeak structure off 21(m) is avoided. It can be veri-
fied numerically that the resulting state will be the assum
Fock state for a wide range of the eigenvaluex. In the ex-
1-7
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amples discussed below we will see that in the dynamics
in fact effectively has such a truncated Hilbert space if
initial state of the system is chosen appropriately.

The time evolution of the density operator was calcula
by a quantum trajectory method@38–40#. The effective, non-
Hermitian Hamiltonian governing the continuous dynam
reads

Ĥeff5Ĥ int2 i
\G

2
Â22, ~43!

whereĤ int is defined in Eq.~14! and the jump operators ar
given by

Ĵu5AGw~u!Â12e
iuk21x̂(t). ~44!

In the course of quantum trajectory simulations an init
wave function is evolved with the HamiltonianĤeff and
jumps at random times interrupt this evolution. The times
the jumps are determined by the decay of the norm of
time-evolved wave function.

In the first numerical example the initial state was set

uC& in5u1&u0&, ~45!

representing an ion in the ground electronic stateu1& and
vibrational stateu0&. The LD parametersh050.155 andh r
50.247 were chosen so that the vibrational part of the
tionary solution~16! of the master equation~42! was~in the
truncated Hilbert space! the Fock stateu60&. However, the
precision of the LD parameters was only three digits. T
dimension of the Fock space in the simulation wasN570.
The eigenvaluex53.5 was chosen so that the recursion
lation ~38! yields the required target state in the trunca
Fock space. The order of magnitude of the interact
strengthsV052.6G, V r53G in the Hamiltonian~14! was
the same as the relaxation rateG. The duration of the time
evolution wasGt5300, on this time scale the evolution o
the density operator%̂(t) has practically stopped as it can b
seen in Fig. 6. We have verified numerically that the den
operator remains unchanged even on a longer time sca
Gt52000. The resulting vibrational distribution is shown
Fig. 7. This state is very far from the Fock stateu60&. If we
compare with the behavior of the steady state in the cas
the target stateu30&, Fig. 5, we have obtained additiona
peaks in the number statistics that were different from
target state. In the dynamics, where the system was initi
in the motional ground state, the first peak appears to
populated. The coupling from this distribution to the want
dark state is very weak, which is reflected by the nea
stationary behavior obtained in Fig. 6. Even if the target s
would be reached on a much longer time scale this would
of limited practical relevance. In experiments technical no
effects play an increasing role for longer interaction tim
which would prevent the system from approaching the tar
state.

In our second numerical simulation the initial state wa
coherent motional state in the electronic ground state
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uC& in5u1&ua& ~46!

with uau57. The dimension of the Fock space wasN5120,
all the other parameters were set as it was in the first
ample. The coherent stateua57& has a mean Fock-state oc
cupationn̄549. In this case the main part of the initial dis
tribution is below the target Fock stateu60&. We have
performed a similar numerical simulation as in the previo
case to obtain the time-evolved density operator%̂(t). After
a time interval ofGt51500 the resulting Fock-state distribu
tion is shown in Fig. 8. This distribution consists of tw
parts: one of them is centered around the target Fock s
u60&, the other one is situated in the same region as in
previous example where the initial vibrational state was
vacuumu0&. However, now the occupation of the target v
brational state is quite largeP6050.811.

In the third numerical example we chose the initial sta
according to Eq.~46! with uau59. All the other conditions
are the same as in the previous case. The coherent staua
59& has a mean Fock-state occupationn̄581. It follows that

FIG. 6. The time evolution of the mean value of the vibration
population for the ion in the electronic ground state. Initially, t
system was in the electronic and vibrational ground state and
target vibrational state was the Fock stateu60&, which is not reached
on the considered time scale~the scaled timeGt is dimensionless!.

FIG. 7. The population distribution of the vibrational state f
the ion in the electronic ground state after a time evolution ofGt
52000. The physical conditions are the same as in Fig. 6.
1-8
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the main part of the initial distribution was above the targ
Fock stateu60&. The evolution of the Fock-state distributio
derived from the density operator%̂(t) @see Eq.~42!# is
shown in Fig. 9 for several values ofGt. It can be clearly
seen that the initial distribution moves towards the tar
Fock state while it gets narrower. Because of the weaknes
the dynamical coupling with higher-order Fock states,
Hilbert space is effectively truncated to suppress contri
tions to the quasistationary states above the target Fock
u60&. This dynamical truncation provides the necessary c
dition for the steady state solutions discussed in the prev
section. The population of the target vibrational state isP60
50.95 atGt51300. This state is almost a perfect Fock sta
Compared to the previous example, where the initial s
was a coherent state with mean population number below
target Fock state, now we got a higher population for
target vibrational state on a shorter time scale.

The results of the previous three numerical examples
be summarized as follows: if the initial vibrational state h

FIG. 8. Same as Fig. 7. The initial state was the coherent s
ua& with uau57.
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a narrow Fock-state distribution and is situated close to
target Fock state the system will reach the target state w
high probability on a reasonable time scale. If the init
vibrational distribution is far below the target Fock state t
system does not evolve to the desired target state in a
sonable time. In particular it turns out to be useful to choo
the initial motional state somewhat above the target st
This is not surprising since the action of the laser on the
sideband in connection with spontaneous emission has a
dency to cool the motional subsystem. The numerical sim
lations also show that the dynamics effectively truncates
Hilbert space of the ion motion so that the time evolution
the system results in a quasistationary Fock state. The
sidered method of preparing highly excited motional Fo
states in the form of NCS may be feasible for trapped
experiments.

VI. SUMMARY AND CONCLUSIONS

We have studied under which circumstances a pure s
of the harmonic oscillator belongs to the class of NCS.
those states having nonzero expansion coefficients in
Fock representation can always be expressed in the form
NCS. Moreover, it has been shown that even if there
zeros in the expansion of a given quantum state, it can
represented as a NCS in the sense of a limit. As an extr
example the representation of a Fock state as a NCS has
considered. We have provided a representation based
purely mathematical considerations and have discusse
representation originating from the motional dark states o
laser-driven trapped ion. We have shown that, while the fi
representation is mathematically stable, the latter turns ou
be unstable. In this case a Fock state can be obtained on
the Hilbert space of the oscillator is appropriately truncat

Nevertheless, we have shown that even highly exci
Fock states can be generated in ion traps based on the
cept of NCS. The reason for this possibility can be seen

te
r

FIG. 9. The time evolution of

the motional number statistics fo
an initial coherent stateua59&.
The scaled time is given by
t5Gt.
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the extremely weak coupling between the distinct regions
the Hilbert space in which substantial contributions to
motional dark state are expected to occur. This results in
effective cutoff in the Hilbert space of the center-of-ma
motion of the ion. The dynamical evolution of the system h
been studied by quantum trajectory methods. It has b
shown that, if the initial vibrational state has a narrow Foc
state distribution and it is situated close to the target F
state, the system will reach the target state with high pr
ability on a reasonable time scale.
v.

e

d

.

.

i-

ett

A

ria

J.

03340
f
e
n

s
s
en
-
k
-

ACKNOWLEDGMENTS

This work was supported by Deutscher Akademisc
Austauschdienst~DAAD !, Deutsche Forschungsgemei
schaft~DFG!, Coordenac¸ão de Aperfeic¸oamento de Pessoa
de Ensino Superior~CAPES!, Conselho Nacional de Desen
volvimento Cientı´fico e Tecnolo´gico ~CNPq!, Fundac¸ão de
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