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Nonlinear coherent states of trapped-atom motion
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The general character of nonlinear coherent stét3S) is considered. A method is introduced by which
any pure state of the quantum harmonic oscillator can be represented in a limiting sense as a NCS. The
representation of a Fock state as a NCS is discussed in detail. As a physical example we show how to prepare
a highly excited Fock state in an ion trap based on the concept of NCS.
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[. INTRODUCTION pected to substantially reduce the fidelity of Fock states pre-
pared by this coherent scheme in cases where the quantum
Nonclassical states of the electromagnetic field and of theumbers are significantly larger thar=10.
atomic center-of-mass motion have played an important role To avoid the degradation of highly excited nonclassical
in recent years, due to their relation with fundamental probstates, one needs clear insight into the underlying decoher-
lems in quantum mechanics and to the many possible applence mechanisms. In the case of the above experiments, the
cations, ranging from high-resolution spectroscopy to low-dominant source of decoherence of the Rabi oscillations, for
noise communication and quantum computation. Howeveran atom initially prepared in the motional ground state, has
the generation of these states is usually a demanding expetieen shown to consist of rarely occurring spontaneous emis-
mental challenge. One of the most difficult tasks is the supsions from an auxiliaryfar off resonantelectronic state that
pression of decoherence effects originating from the interads used to enhance the Raman coupling strength of the lasers
tion of the quantum system under consideration with itsproviding the coherent Rabi floppin§]. Among the numer-
environment. A particularly important system, where suchous experimental proposals for the generation of nonclassical
decoherence effects can be suppressed to a level that allowsotional states of a trapped ion, a remarkable class involves
one to prepare interesting quantum states, is composed tiie generation of motional dark states. In this context the
one or several trapped ions. In an ion trap the center-of-massgpontaneous emission, which usually limits the possibilities
of a single ion experiences an approximate harmonic extemf coherent quantum-state preparation, serves a useful pur-
nal potential[1], hence the ion trap is a realization of the pose: it is actually needed for preparing and stabilizing the
harmonic oscillator model in quantum mechanics. lon trapnonclassical state under study. There are several theoretical
ping inspired the development of laser cooling techniqueproposals dealing with motional dark states that realize this
such as “Doppler” laser cooling2—4] and laser cooling in  type of dynamics, including squeezed stdi&g], even and
the resolved sideband limi#], which allows one to prepare odd coherent stategl1], nonlinear coherent statg®CS)
the ion in the vibrational ground stafts,6]. [12], and squeezed cat stafds3]. Similarly, the generation
Making use of the momentum exchange between the atorof multimode entangled states as dark states could be also of
and a driving light field, one can manipulate the atomicpractical importance. In this spirit, the preparation of pair
center-of-mass motion. In this manner, experiments haveoherent state§l14], pair cat stateg15], and approximate
been performed that realize examples of squeezed states, n®kJ(2) stateg16] have already been considered.
tional number statefs7], and Schrdinger-cat-like statefs]. Out of the variety of dark states that can be realized, in
These state-preparation methods typically rest on coherettite following we will be particularly interested in the NCS. It
interactions of the trapped atom with lasers that are appraurns out that several notable states in quantum optics can be
priately tuned on particular vibronic transitions. Clearly suchrepresented as NCS. For their properties see, e.g., Refs.
methods are limited by the decoherence mechanisms actirig7,1§. Some special cases that have been considered are
on the system. Since the decoherence effects become matee g-deformed coherent statg49,20], the photon added
important with increasing interaction time, the preparation ofcoherent statef21] and the negative binomial statga2].
highly excited nonclassical states is expected to be difficultSeveral properties of the even and odd NCS have been dis-
For example, motional Fock states have been experimen- cussed in Ref[23], see also Ref.24]. Other types of NCS
tally prepared by sequences mfinteractions withm pulses have been considered in Ref@5-27. Whereas the prepa-
[7]. Thus the minimum required preparation time consists ofation of some of the motional dark states is limited to the
n/2 Rabi cycles. On the other hand, in the experiments &amb-Dicke regime, the NCS are insensitive even to the
significant damping of Rabi oscillations was observed on anotional kick effects that become more and more important
time scale of several Rabi cycles. This decoherence is exXor large Lamb-Dicke parametefd2]. Thus their prepara-
tion in the form of dark states opens new possibilities for
preparing highly excited nonclassical states that are almost
*Permanent address: Research Institute for Solid State Physi¢tdisturbed by spontaneous emission.
and Optics, H-1525 Budapest, P.O. Box 49, Hungary. In the present paper we deal with the question of how
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general the NCS are. We introduce explicitly a method by AAT_qATAzl 3)
which, in a limiting sense, any pure state of the harmonic '

oscillator can be represented as a NCS. As an extreme eyhere q is some real number. This deformation was intro-
ample, we show that even the Fock states—although they d@yced in Ref.[29], where the corresponding-coherent

not display any coherence properties—belong to the class Qfiates, the eigenstates of theleformed annihilation opera-

NCS. Finally, we demorjstrate by numerical 5|mulat|ons Oft r A, were also discussed. An equivalent commutator form
the dark-state preparation method that the generation

. . i . . ct ) of the definition(3) can be derived17], for which the
highly excited motional Fock states of a single trapped iony Sx function reads

such as the statg=60), is possible by making use of the

concept of NCS. 1-q"
This paper is organized as follows. In Sec. Il the main [n]= 1—q (4
properties of deformed harmonic oscillators are discussed. q

The definition of the deformed commutator relation and the . o0 0 commonly used deformation of the com-
coherent states associated with the deformed boson Operat%%tation relation yields the “physics” bosons

are summarized briefly in Sec. Il A. In Sec. Il B an important

physical realization of the deformed boson operators is re-
called, where the physical system is a single trapped ion
driven by two laser fields and the spontaneous decay of th

AAT—gATA=q". (5)

; o . . This (P-case deformation of the boson operatdrs9] is a
electronic state is included. It is shown in Sec. Il that pure alization of the Hopf algebras, or quantum gro[&. For

. ; r
states of the harmonic oscillators can always be represent L |
as NCS. In Sec. IV two representations of a Fock state :ﬁ Een ?ggir\?g;attg[f%mz) of the definition(5) the box func

NCS are compared. The generation of a highly excited Foc

state in an ion trap based on the concept of NCS is studied in sinh(\n)
Sec. V. A summary and some conclusions are given in Sec. [n]= Sinhn A=Ing. (6)
VI.

The g-deformed oscillators may be considered as special
Il. DEFORMED HARMONIC OSCILLATOR cases of the so-calldscillators[18], where the-oscillator

A. Deformed commutation relation operators have been defined by

Deformations of the canonical commutation relations A_2en

. A=af(n),

have been proposed since the early days of quantum mechan-
ics [28]. For the harmonic oscillator, the usual creation and

annihilation operatora’ and a are replaced by deformed

boson operatora’ and A, respectively29-31. A number  The functionf(n) can be practically any real or complex-
operatorn is also postulated which counts the quanmtm) valued function. The basic commutator reads

=n|n). The set{|n);n=0,1, ...} provides a denumerable

basis for the Hilbert spacdock space The number opera- [AAT]=(n+1)f 2(n+1)—nf 3(n). (8)
tor satisfies

AT=f(n)a. 7)

It follows that [n]=nf2(n). By the special choice of the

[n,A]=-A and [n,AT]=A", (1) function f(n)
as for the usual nondeformed boson operators. Note that in sinh(An) |12
this definition one does not requifZeandAT to be related to =\ Tsimnn | @ A=Ina ©)

n in the usual way, i.e., in generAfA#n. The vacuum state
|0) does not contain quanta, theref(fn@)=0 and A|0> it has been shown that tlieedeformed harmonic oscillator in

=0. The productA’A preserves the number of quanta, con—the P_case[cf. Eq.(9]is a spem_al case of the a_\lgebra (_)f the
o i S ) f-oscillator operators Eq7). An important physical realiza-
sequently it is necessarily a function of A convenient no-  (ion of the f oscillators is the center-of-mass motion of a

tation of abox function is introducedA"A=[n] (read “box  trapped ion where the electronic system of the ion is subject
n")[17]. Similarly, AA' is also a function of and it can be  to both radiative damping and resonant laser excitation at

shown thatAAT=[n+1]. The deformed commutation rela- Vibrational sidebandgl2]. _ _ -
tion is defined by The coherent states associated with the deformed annihi-

lation operatord, are defined as
AAT-ATA=[n+1]-[n]. 2 X
. Alp)=plw), (10)
One of the most important class of the deformed har-

monic oscillator is theg-deformed oscillator. In case of whereu is some complex number. These generalized coher-
“Maths” bosons ent states are well defined|[fn]/x?>1 whenn—o. A re-
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\ / "é: %fl ds Ws)e ns(é+éT)ée—ins(é+éT) (13)
-1

includes the motional kick effects due to the emission of
photons. The functioW(s) is the radiation pattern and the

Wr =Wy —V Wo = W Lamb-Dicke parameter; measures the localization of the
motional ground state of the atom relative to {leffective
1) \\ C) // wavelength of the transition. The Hamiltoni&h,, includes
X DA the two driving laser fields, each of which is described by a
N ¥y / nonlinear Jaynes-Cummings Hamiltoni38]

FIG. 1. Excitation scheme of the trapped ion for the preparation Hint:E{Qr 7fa(nim)a+ Qofo(n; 70) Azt Hoe.,
of a NCS. (14)

lated expression in quantum optics has been considered imhere(), (q=0y) are the Rabi frequencies corresponding
Refs.[17,32. The expansion of the state) in the Fock to the two laser fields, and
basis is

. S oon
fi(him=e 7723 ——

n=o(n+i)1'-g)(772)|n><n|, (15)

*® n
=N, Z, eI, (1
' L%"(x) being the associated Laguerre polynomial. Here the
two Lamb-Dicke parameters are equal to each other
[n]t=[0][1]---[n]. = 70, Since the laser fields propagate in parallel directions.

) ] . ] ) The steady state of the laser driven and damped atom is of
This solution of the eigenvalue equatitt0) is very general, the form

it can be adopted for all deformed boson operators which
satisfy the deformed commutation relatioii$),(2). The és=|1>|lﬂ><¢|<1|- (16)
states of the forn{11) are a generalization of the Fock rep-
resentation of the coherent state. For fiescillators these  since the atom is in the ground state, the motional $iate
states were also interpreted as N[13,18. In the next sub- s obtained when the atom stops to fluoresce, thus the system
section we discuss in more detail an ion tl’ap SyStem in Wh|Ch\5 said to be in a motional dark Stdtbz] Different types of
NCS emerge. motional dark states have been studied, such as squeezed
state§ 10], even/odd coherent statell], pair coherent states

B. Nonlinear coherent states [14] and others. Driving the system according to the excita-

._tion scheme in Fig. 1 with two lasers of equal Lamb-Dicke

i . DA . Ei)arameters, the motional dark state shows up as a[Ng|S
to a special choice of the functidiin), has been proposed in

the quantized motion of a trapped atom in a Paul fref. |)y=|x;f), (17
We show in Fig. 1 the excitation scheme which will also be

the basis for the generation of other types of NCS consideredhich satisfies the eigenvalue equation

in the following. Two lasers drive the atom simultaneously in

the resolved sideband regime. The first one of frequengy A|X;f):x|x;f>, (18
is resonant to the electronic carrier frequengy;. The sec-

ond one of frequency, is on resonance with the first red The deformed annihilation operatéris defined by
motional sidebandy, = w,;— v, wherev is the motional fre-

quency of the atom in the trap potential. Eventually, the A=f(n)a. (19
wavy line in the scheme indicates a radiative decay of the
excited electronic state with a decay réte Note that this definition is equivalent to that of the

The dynamics of the system can be described by the ma:

ter equation Y-oscillator operator$7) sincef(n)a=af(n—1). In the fol-

lowing we will use the notation oA according to Eq(19),

do T A o which has the technical advantage of being in normally or-
FTa %[Him,g]Jr 5(2A129A21— A0 —0A,). dere_d form. In the ion trap system under consideration one
(12) obtains
A i LY (77
The operatorsA;; flip the electronic state fromli) to Y=—2, f(n):%_ (20)
[i} (i,j=1,2). Moreover, 7 (n+1)Ly" (%)
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Thus the eigenvalug can be well controlled by the two  0.2f
(complex Rabi frequencie€)y and Q, of the two lasers.
The functionf(n) contains associated Laguerre polynomials
and it can be partly modified via its dependenceroilhese
states may display interesting properties, such as amplitud:
squeezing and splitting into substates. In the latter case pro ¢.1}
nounced quantum interference effects can occur.

It would be of great interest if one could have more free-
dom to choose the form of the functidifn) since in this  ©- %3]
case the NCS would include a wide class of pure quanturr
states. A possible way to tailor the functid(n) in the ion
trap is the engineering of the atom-laser interacfid4]. It
allows one to control the excitation dependent nonlinearities
by increasing the number of lasers driving the system. When FIG. 2. The modulus of the first few Fock state expansion co-
the wave vectors of the lasers have different projections ontefficientsc, of a state| ).
the motional degree of freedom of interest, the interaction is
described by several Lamb-Dicke parameters that eventually However, we encounter a problem if there are zeros in the
allow one to control to some extent the functibm). expansion23). To be more specific, let us consider the even

Schralinger-cat state

0.15¢

lcol leal el lesl leal fes| les| ler]

[Il. NCS REPRESENTATION OF PURE STATES

In this section we study the conditions for a state to be- | )= i(|a>+ |—a)), A= V2+2 exd —2|al?).
long to the class of NCS. The solution of the eigenvalue A
equation for the NCYsee Eq.(18)] can be expanded in (25
terms of Fock states
The Fock state coefficients of this state reads
n

X
n|x;f ) =N—F""——, 21
(nhx:f) yn!f(n—1)! (21 Eefla\zﬂa_n n is even
c,=1 A Jnt’ ’ (26)
where we define " )
0, n is odd.
f(—1)!=1. (22

As a result, we have a sequence of nonzero and zero coeffi-

In order to express a staf¢) as a NCS one may compare cients. Inserting two consecutivg, from Eq. (26) into Eq.

the Fock state expansion of the NCS in E2{l) with that of  (24) we get either zero or infinity fof(n). Consequently, the

the state function f(n) is ill defined and the even Schiinger-cat
state does not belong in a strict sense to the class of NCS.

- More generally, if in the Fock state expansion of a state there
|l/f>=n§=:0 calN). 23 are alternating zero and nonzero periods then the state does

not belong in a strict sense to the class of NCS.

After some basic algebra one finds a relation between the However, even if the functiorf(n) is ill defined, it is

Fock state coefficients of the state in question and the norR0Ssible to construct a NCS, in the sense of a limit, which
linear functionf(n) of the NCS, may represent any chosen pure state. For this purpose we

will consider the typical difficulties that may emerge in the
c NCS representation of an arbitrary pure state. In Fig. 2 we
X n (24) show the modulus of the first few Fock state coefficients of a
Vn+1 Cn+a state| ). Difficulties arise when a nonzero Fock state coef-
ficient is followed by a zero one and vice versa, or if there
Inserting this function into Eqg18) together with Eq(19),  are two or more coefficients one after the other which are
the resulting NCS is equal to the stdi@) in Eq. (23), pro-  zeros. In order to overcome these problems we propose to
vided thatf(n) is a well-defined function. truncate the Hilbert space at an arbitrarily large but finite
Now we discuss the existence of the NCS determined b¥ock stateN). The next step is to replace the zeros in the
the functionf(n) in Eq. (24). If all coefficientsc,, are non-  Fock state expansion of the state in questioreby where

zero in the Fock state expansion of the sfatgin Eq.(23)  ¢<1 and fixed. We are going to construct a functitm)
thenf(n) is a well-defined function for alh=0. Certainly,  describing a staty; f N

in the limit of n— o it should be allowed thdtc,|—0, pro-

f(n)=

vided that the ratioc,,/c, 1| remain finite. In other words, N n
all the pure statefy) whose Fock state coefficients, are lx:FIN=ND X—|n>, (27)
nonzero for any finite value of belong to the class of NCS. n=0 \n!f(n—1)!
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which approximates the stalter), under consideration in the

truncated Hilbert space.

PHYSICAL REVIEW 84 033401

We should note that the method discussed above is not the
only one by which an arbitrary state) can be represented

In the following we give an example of the rules regard-as a limit of a NCS. Our intention is to demonstrate that such

ing the choice of the functiof(n).
R1.c,#0 andc,,.,#0: apply Eq.(24).
R2.c,#0 andc,,;=0: replacec,,; by /N then

X Cn

Jyn+1 e/N’

R3.c¢,=0 andc,, ;#0: replacec,, by /N then

f(n)= (28)

x ¢/N

vn+1 Cnt1

R4.c,=0 andc,, ;=0: replace botlt,, andc,, ., by e/N
then

f(n)= (29

X

Jn+1'

f(n)=

(30

wherec,, (n=0...N) are the Fock state coefficients of
the statg/ ) in question. Note that the rulB2 describes a
singularf(n) asN— . The staté x;f ) does not satisfy the

eigenvalue equatiofil8), instead we have

Alx;Fyn=x(1=IN}ND|x; f ), (3D)

where the last term on the right-hand side results from th
truncation of the Hilbert space. Ad— o this term vanishes

since limy_..(1—|N){N|)=1.
It can be readily verified that if the functidi{n) satisfies
the rulesR1— R4, then

[n=Ixi TN (32

Taking the scalar product of both sides of this equation wit
the Fock statdn), (n=0,...N), one finds exact agree-

ment for(n|¢)y# 0. If on the left-hand sidén|)y=0 then
on the right-hand side one obtaiks|y;f )y=¢/N. For a

sufficiently largeN this number can be arbitrarily small. The

norm of the statéy;f )y is

2

ExleF In=n( v w>N+k%, (33

h

a method can be constructed, and to consider the mathemati-
cal problems that arise in the course of the construction of
such a method. In the next section we discuss a case of
particular interest, the representation of a Fock state as a
NCS. For the Fock state all but one coefficieptare van-
ishing. Moreover, they are known to display no coherence
properties. In this sense the Fock states may be expected to
be the most unlikely to belong to the class of NCS. It is
interesting that, nevertheless, they can be represented in the
form of NCS.

IV. REPRESENTING FOCK STATES AS NCS

In this section we will show that Fock states belong, as a
limiting case, to the class of NCS. To represent a Fock state
the functionf(m) should satisfy the conditiofwe denote
this function in the following byf.(m), in order to make
explicit the dependence on the parametgr

1 1/e,
fn—1)r | <le,

n=Kk,

n#k, (35

wheree<1 is a small number. In the NCS determined by

this functionf;l(m) the coefficient of thekth Fock state

exceeds by orders of magnitudes all the others, hence after
enormalization one gets with very good approximation the
ock statdk). Indeed, taking the limit—0 one finds

lim | f.) =K, (36)

£—0

where|yx;f,) is defined in Eq(21). Note, that in Eq(36) the
limiting state is the Fock staté) for any finite, nonvanish-
ing value of y. The functionf;l(m) could be realized by
choosing

k—m—e

-1 _
fe (m)_m—k+1+s'

(37)

This function takes finite values fom<k—1, and for
e<1 it has an effective cutoff fom=Kk.

So far we have dealt with the mathematical representation
of a Fock state as a NCS. However, it has been shown in Ref.
[35] that under ideal conditions a Fock state can be prepared

wherek is the number of zeros out of the Fock state coeffi-as a dark motional state of a trapped ion. In the proposed

cientsc,, (n=0,... N) of the statd ¢/)y . Sincek<N the
relationke?/N2<&?/N holds, therefore the norm dk:; f )y
approaches 1 ad—x. Taking the limitN—« one has

[g)=lim |yn=lim | x;f)n=|x;f).

N—oo N— oo

(39

The last equation means that in the limitldf- the state

|x;f Yy will be the NCS| x; f ), which satisfies the eigenvalue
equation(18). In this way the method yields a NCS which is

equivalent to the state under consideration.

scheme the atom is driven by two lasers in different direc-
tions, so that the Lamb-Dicke parameters on the carrier and
the red sidebands;, and 7,, respectively, can be varied
independently of each other. Expanding the steady state of
the system in the Fock basis E@3), from the master equa-
tion (12) together with the ansatZl6) one may derive the
recursion relatiof35]

- 77r2/2

ym—+1

_ .2
LY 9 i1+ xe” 2L (n)c,=0. (38)
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One may choose the LD parametgg such thatl {9(#3)

=0 for m=Kk. In this case the recursion relation ensures that
all coefficientsc,, vanish form>k. Moreover, one may fix

7, such that.{Y, (?)=0. As a consequence ai}, vanish

for m<k. The conclusion is that the only nonvanishing co-
efficient isc, and thus the steady state of the atomic motion 10 20 E 20 50
is thekth Fock state m

4
[u]

—1
2 DDDDDDDDE. DDDDDDDDDDDDDDEf (m)
= = =i =i = = = BT HE’IE““'““““" fs_l (m)

-2

) =Ik). (39

We emphasize that in order to get the Fock stajeas the

solution of the recursion relatio(88), the LD parameters

should be set with extremely high precision as we will see FIG. 3. The behavior of the functiorfs; *(m) (filled boxes and
later. f ~1(m) (empty boxesdefined in Eqs(37) and (40), respectively,

We point out that the states defined by the recursion rela@round their singularities. These functions correspond to the Fock

tion (38) are in fact nonlinear coherent states. In the genera‘ftate|30>-
case of arbitrary values of the LD parameters the recursion

relation (38) yields causeI_Enl)(nrz) is almost zero not only fom=k—1, but for
several larger values of too. Under the chosen conditions
=[xt the heights of the secondary peaks are of the order of few

hundreds compared to the value of idf the main peak. A
L (m+ 1)Lﬁ?)(7zg) (2= D)2 natural question arises: how sensitive are the results of the
fi(m)= We T O (40 recursion relatior(38), or equivalently the NC$40), with
m e respect to the chosen precision of the calculation, and thus

By choosing the LD parameters according to the discussiolfith respect to the precision of an experiment. Using

given above the NC80) is equivalent to the Fock stafie). ~ MATHEMATICA [36], we have evaluated Ed40) with the
Since it is impossible in an experiment to fix precisely the€Xireme precision of 50 digits. The LD parametggsand 77,

value of the LD parameters, it is of interest whether theWere chosen in such a way that their first 50 digits were
realization of Fock states as NCS becomes possible und&Aua toothe squarelroot of the roots of the Laguerre polyno-
more realistic conditions. mials L{?(x) and L(k_)l(X)., respectively.

So far we have discussed two representations of a Fock The result is shown in Fig. 5. It can be seen that the
state as NCS: one of them is derived from pure mathematicAmerging state depends sensitively on the choice of the ei-
considerationgsee Eqs(35),(36)], the other one represents genvaluey. In all cases we did not obtain the expected Fock
the motional state of an appropriately driven trappedzee  State, but.a state which is a syperposmon of_ several Fock
Eq. (40)] under idealized conditions. We show now that theseStates. This means that performing the calculations with even
two representations are similar to each other, but not equivaxtremely large but finite precision prevents us to obtain the
lent. Expanding the function for the trapped atom, Ef), ~ Fock states as predicted by the recursion relatg#). Con-
around the zeros chosen to get #th Fock state, we arrive Seduently, getting a Fock state with E40) is a mathemati-

at

15 o f—l(m)
L) am=k)+L(5)) o .
f (m)OC (1) 2 ~ (1) 2\ ! (41) - [m]
L (73 b(m—k+1)+ LY (77) 10 o o
m)
] o
where we allow the LD parameterg, and z, not to take 5

their precise values, i.e., the corresponding Laguerre polyno
mials are not exactly equal to zero at these points. It can be
seen that the expansion bf (m) aroundm=k in Eq. (41)
is a rescaled version df_*(m) in Eq. (37). In Fig. 3 we
compare these two functions, which exhibit a similar behav-
ior. Most importantly, they are strongly peaked rat=Kk,
which cannot be seen in the figure, since the height of the -5
peaks could be even infinite in principle. Here we have cho-
sen 772 and 7?2 such that they agree for 50 digits with the
precise lowest roots di(ko)(x) and L(kl,)l(x), respectively. -10
In Fig. 4 we redisplay ~*(m) andf gl(m) for a largerm
interval. The functionf gl(m) behaves as expected, it be-
comes constant far from its singularity. However, the func- "
tion f ~%(m) exhibits several peaks. These peaks emerge be- FIG. 4. Same as Fig. 3 but for a longer interval.

fl(m)

250 300 350

I
pnooo oo a
SW
(o]

033401-6



NONLINEAR COHERENT STATES OF TRAPPED-ATOM MOTION PHYSICAL REVIEW 84 033401

B, 1 P, 1
0.8 0.8
0.6 0.6
x=1.6 x=1.62
0.4 0.4
0:2 02 FIG. 5. The motional number
statisticsP,, is shown for the sta-
0O 10 20 30 40 50 60 70 80 90100110120130 0 10 20 30 40 50 60 70 80 90 100110120130 tional’y states resulting from the
n n . .
B i B 1 recursion relation(38) for four
" " different values of the eigenvalue
0.8} 0.8 x- The calculations were per-
formed with 50 digits of precision.
0.6 x=1.66 0-6 x=17
0.4 0.4
0.2 0.2
F.
0 10 20 30 40 50 60 70 80 90 100110120130 0 10 20 30 40 50 60 70 80 90 100110120130
n n

cally unstable procedure. This instability occurs in the deterdriven by laser fields. We have demonstrated that the latter
mination of the steady state. In practice, however, the tim®ne is mathematically unstable due to the multipeak structure
needed to approach this steady state may be extremely largef. the functionf ~1(n) in Eq. (40). In this section we are
Thus, it may be possible, despite the instability of the steadgoing to show that in spite of this instability, the ion may
state, that in the laboratory one can actually prepare, througieach a highly excited Fock state in the NCS preparation
the NCS method, a highly excited Fock state as a quasistacheme, by making use of the dynamics of the ion together
tionary state. The physical reason for this possibility resultsvith appropriately chosen initial vibrational states and LD
from the fact that the different regions of the Hilbert spaceparameters.

contributing to the steady state are coupled very weakly by The master equation governing the time evolution of the

bOth the driVing |aserS and the momentum tl’al’!sfel’ on thgensny Operato@(t) of a trapped ion' which suffers Spon_
atom due to spontaneous emission. In fact, we will show thafaneous decay of level 2, and is subject to a bichromatic laser
it is possible to generate a Fock state in a laser-driverycitation of Jaynes-Cummings type, has already been dis-

trapped ion system by using the idea of independent adjustyssed in Sec. 1l B and is redisplayed here for convenience:
ment of the LD parameters of the carrier and sideband lasers.

In the next section we discuss an experimental scheme, in (o T A o
which the problems arising from the additional peaks of E:_%[H‘”t’9]+ §(2A129A21_A229_QA22)-
f “1(m) are avoided by effectively truncating the Hilbert (42)

space of the system in the dynamics.
In an experiment the LD parameters cannot be controlled

with arbitrary precision. From recent experiments it appear

to be reasonable that the LD parameters can be fixed with%1

digits of precisior] 37]. This loss of accuracy may result in a carrier frequency of the electronic transition and the other

5|gn|.f|cant mismatch between the roots of the Laguerre pOIV.bne is tuned to the first red vibrational sideband. Now the LD
nomials and the squares of the LD parameters. The main

effect of this deviation is the diminution of the height of the parametersyo and s, as_somated .W'th _the f|e|_ds at the carrier
PR N frequency and at the first red vibrational sidebands, respec-

peak of the functionf ~(m) atm=k~1, as one expects tively, are chosen independently of each other by varying the

from Eq. (41). The other peaks remain unaltered practically. y: P y y varying

The reduction of the important peak bf 1(m) compared to direction of the Ia_ser fields. T_he Hamiltoniéh,, is given by
the others will decrease further the quality of the “Fock Ed- (14). The stationary solution of the master equati4g)
state” which was supposed to be obtained from the recursioffas the form given in E¢16), where the vibrational palt))
relation (39). is given in Eq._(40). _ _ _ _
In a numerical simulation the Fock space is necessarily
truncated. If we look for the solution of the recursion relation
(38) in a truncated Fock space of dimensidnprovided that
N is between the first and second approximate singularity of
In the previous section we have compared two represerthe functionf ~*(m) [see Eq.(40)], then the problem with
tations of a Fock state as NCS. One of them being derivethe multipeak structure df ~1(m) is avoided. It can be veri-
from purely mathematical considerations, the other ondied numerically that the resulting state will be the assumed
originating from the motional state of a trapped ion which isFock state for a wide range of the eigenvajueln the ex-

The recoil terrnz in the dissipative part is defined in Eq.
3). Similarly to the original idea for preparing NC32]
wo laser fields are applied. One of them is tuned to the

V. GENERATION OF A FOCK STATE BASED ON THE
CONCEPT OF NCS

033401-7
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amples discussed below we will see that in the dynamics ong#(t))
in fact effectively has such a truncated Hilbert space if the 15
initial state of the system is chosen appropriately.

The time evolution of the density operator was calculated 12-5
by a quantum trajectory meth¢d88-40. The effective, non-
Hermitian Hamiltonian governing the continuous dynamics

reads 7.5

.. AT >

Her=Hin—1 TAzzy (43 25
whereH,, is defined in Eq(14) and the jump operators are 0 60 120 180 240 300
given by I't

A A iukoX(t) FIG. 6. The time evolution of the mean value of the vibrational
Ju=VIw(u)A ™2, (44) population for the ion in the electronic ground state. Initially, the

system was in the electronic and vibrational ground state and the

In the course of quantum trajectory simulations an initialtarget vibrational state was the Fock st#@), which is not reached

wave function is evolved with the H;;\miltoniaﬁeﬁ and on the considered time scafhe scaled timd't is dimensionless

jumps at random times interrupt this evolution. The times of

the jumps are determined by the decay of the norm of the |¥)in=|1)| ) (46)

time-evolved wave function.

In the first numerical example the initial state was set asyjith |«|=7. The dimension of the Fock space s 120,
all the other parameters were set as it was in the first ex-
[¥)in=11)[0), (45 ample. The coherent state=7) has a mean Fock-state oc-
. L . cupationn=49. In this case the main part of the initial dis-
representing an ion in the ground electronic stdte and tribution is below the target Fock staf$0). We have

\ﬁ%raztzllc;n\?\/lesr:aat(:dh%>s;e-[1h§oLtaa?e}[;]a;m\/ei!tber:t?igigl.tﬁ?t %?1;17; StaE)erformed a similar numerical simulation as in the previous
tionary solution(16) of the master equatio#2) was(in the case t‘? obtain the time-evolved denSity operai(r). A_fter
truncated Hilbert spagethe Fock statd60). However, the a time interval ofl 't=1500 the resulting Fock-state distribu-
precision of the LD parameters was only three digits. Thdion is shown in F|g. 8. This distribution consists of two
dimension of the Fock space in the simUlation Wés 70 parts: one of them is centered around the target Fock state

The eigenvalug¢=3.5 was chosen so that the recursion re—|60>'. the other one is situated in the same region as in the
lation (38) yields the required target state in the truncatedP’€Vious example where the initial vibrational state was the

Fock space. The order of magnitude of the interaCtiOr\tl)?gtlij;glos?t'altﬁeoi\lsvzvtitréTaolyggéthe— 8‘3;;153“0” of the target vi-
60_ . .

strengthsQ y=2.6I", ,=3I" in the Hamiltonian(14) was he third ical | h he initial
the same as the relaxation rdte The duration of the time In t e thir numerica’ examplie we chose the m't.lz.i state
according to Eq(46) with |«|=9. All the other conditions

evolution wasl't=300, on this time scale the evolution of . :

. ~ . . are the same as in the previous case. The coherent|atate
the density operatae (t) has practically stopped as it can be —o\vh Fock ioRs1. It foll h
seen in Fig. 6. We have verified numerically that the density ) has a mean Fock-state occupatipa8l. It follows that

operator remains unchanged even on a longer time scale of
I't=2000. The resulting vibrational distribution is shown in B0y
Fig. 7. This state is very far from the Fock sta€®). If we
compare with the behavior of the steady state in the case o 0.08f
the target statd30), Fig. 5, we have obtained additional
peaks in the number statistics that were different from the ;.|
target state. In the dynamics, where the system was initially
in the motional ground state, the first peak appears to be
populated. The coupling from this distribution to the wanted
dark state is very weak, which is reflected by the nearly
stationary behavior obtained in Fig. 6. Even if the target state 0.02f
would be reached on a much longer time scale this would be
of limited practical relevance. In experiments technical noise
effects play an increasing role for longer interaction times, 0 10 20 30
which would prevent the system from approaching the target

state. FIG. 7. The population distribution of the vibrational state for

In our second numerical simulation the initial state was ahe ion in the electronic ground state after a time evolutio bf

coherent motional state in the electronic ground state =2000. The physical conditions are the same as in Fig. 6.

n

033401-8



NONLINEAR COHERENT STATES OF TRAPPED-ATOM MOTION PHYSICAL REVIEW 84 033401

P, a narrow Fock-state distribution and is situated close to the
0.8f target Fock state the system will reach the target state with
high probability on a reasonable time scale. If the initial
vibrational distribution is far below the target Fock state the
system does not evolve to the desired target state in a rea-
sonable time. In particular it turns out to be useful to choose
0.4l the initial motional state somewhat above the target state.
This is not surprising since the action of the laser on the red
sideband in connection with spontaneous emission has a ten-
0.2r dency to cool the motional subsystem. The numerical simu-
lations also show that the dynamics effectively truncates the
s Hilbert space of the ion motion so that the time evolution of
0 10 20 30 40 50 60 70 the system results in a quasistationary Fock state. The con-
n sidered method of preparing highly excited motional Fock
gtates in the form of NCS may be feasible for trapped ion
experiments.

FIG. 8. Same as Fig. 7. The initial state was the coherent stat
|@) with |a|=7.

the main part of the initial distribution was above the target VI. SUMMARY AND CONCLUSIONS

Fock statd60). The evolution of the Fock-state distribution  \we have studied under which circumstances a pure state
derived from the density operatar(t) [see Eq.(42)] is  of the harmonic oscillator belongs to the class of NCS. All
shown in Fig. 9 for several values oft. It can be clearly those states having nonzero expansion coefficients in the
seen that the initial distribution moves towards the targeFock representation can always be expressed in the form of
Fock state while it gets narrower. Because of the weakness ®CS. Moreover, it has been shown that even if there are
the dynamical coupling with higher-order Fock states, thezeros in the expansion of a given quantum state, it can be
Hilbert space is effectively truncated to suppress contriburepresented as a NCS in the sense of a limit. As an extreme
tions to the quasistationary states above the target Fock staé&ample the representation of a Fock state as a NCS has been
|60). This dynamical truncation provides the necessary coneonsidered. We have provided a representation based on
dition for the steady state solutions discussed in the previougurely mathematical considerations and have discussed a
section. The population of the target vibrational stat®ds  representation originating from the motional dark states of a
=0.95 atl't=1300. This state is almost a perfect Fock statelaser-driven trapped ion. We have shown that, while the first
Compared to the previous example, where the initial stateepresentation is mathematically stable, the latter turns out to
was a coherent state with mean population number below thiee unstable. In this case a Fock state can be obtained only if
target Fock state, now we got a higher population for thethe Hilbert space of the oscillator is appropriately truncated.
target vibrational state on a shorter time scale. Nevertheless, we have shown that even highly excited
The results of the previous three numerical examples caRock states can be generated in ion traps based on the con-
be summarized as follows: if the initial vibrational state hascept of NCS. The reason for this possibility can be seen in

0.04
0.03
0.08

0.02 0.06

0.01
0.02

FIG. 9. The time evolution of
the motional number statistics for
an initial coherent statéa=9).
0.3 7 = 286 T = 1300 The scaled time is given by
0.8 =TIt.

O 10 20 30 40 50 60 70 80 90 100110 0 10 20 30 40 50 60 70 80 90 100110
n n

b 10 20 30 40 50 60 70 80 90 100 110 b 10 20 30 40 50 60 70 80 90 100 110
n n
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