


S, INFORMAL.


using the cognitive conflict strategy. *International Journal of Science Education*, 30(8), 1115-1128 // g7, C.


Bell, D. (2008). Engaging teachers, engaging pupils, engaging science: are we learning
our lessons? School Science Review, 90(33), 35-44 // g1, g8.


Mathematics, Science and Technology Education, 4(4), 327-335 // g6, LAB, AFF.


solving: A cognitive difference. Journal of Chemical Education, 85(6), 873-878 // g7, C.


Czerniak, C. M. (2007). Interdisciplinary science teaching. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 537-559). Mahwah: Lawrence Erlbaum Associates // g1, g8, CTL, AFF.


Dal, B. (2006). The origin and extent of student's understandings: The effect of various kinds of factors in conceptual understanding in volcanism. Electronic Journal of Science Education, 11(1) // g6, g7, g8, ES.

Dal, B. (2007). How do we help students build beliefs that allow them to avoid critical learning barriers and develop a deep understanding of geology? Eurasia Journal of Mathematics, Science and Technology Education, 3(4), 251-269 // g6, ES.


De Jong, O., & Taber, K. S. (2007). Teaching and learning the many faces of chemistry. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 631-652). Mahwah: Lawrence Erlbaum Associates // g1, g6, g7, C.


Desjardins, S. G. (2008). Disorder and chaos: Developing and teaching an interdisciplinary course on chemical dynamics. *Journal of Chemical Education, 85*(8), 1078-1082 // g7, C, NONLIN.


Erdogan, I., & Campbell, T. (2008). Teacher questioning and interaction patterns in classrooms facilitated with differing levels of constructivist teaching practices. International Journal of Science Education, 30(14), 1891-1914 // g8, CTL, gP,


Fraser, W. J., & Maguvhe, M. O. (2008). Teaching life science to blind and visually impaired learners. *Journal of Biological Education,* 42(2), 84-89 // g7, B.


Hänze, M., & Berger, R. (2007). Cooperative learning, motivational effects, and student characteristics: An experimental study comparing cooperative learning and direct instruction in 12th grade physics classes. *Learning and Instruction, 17*(1), 29-41 // g7, P, AFF.


to the task? Cultural Studies of Science Education(3), 263-276 // g1, CC.


Hunter, A.-B., Laursen, S. L., & Seymour, E. (2007). Becoming scientist: The role of undergraduate research in students' cognitive, personal, and professional development. *Science Education, 91*(1), 36-74 // g1, SCON, g7, g8, INFORMAL, CSC.


Inagaki, K., & Hatano, G. (2002). *Young childrens' naive thinking about the biological world*. New York: Taylor & Francis // g1, g6, B.


Kao, H.-L. (2007). A study of Aboriginal and urban junior high school students' alternative conceptions on the definition of respiration. *International Journal of


Kelly, G. J. (2007). Discourse in science classrooms. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 443-469). Mahwah: Lawrence Erlbaum Associates // g1, DISCOURSE, CC, ARGUMENTATION, WRITING.


Naturkundemuseum. Zeitschrift für Didaktik der Naturwissenschaften, 12, 7-22 // g7, B, BIODIV, INFORMAL, MMEDIA, AFF.


Kuhn, D. (2007). Reasoning about multiple variables: Control of variables is not the only challenge. Science Education, 91(5), 710-726 // g7, GC, INQUIRY.


Lazarowitz, R. (2007). High school biology curricula development: implementation, teaching, and evaluation from the twentieth to the twenty-first century. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 561-598). Mahwah: Lawrence Erlbaum Associates // g1, g7, B, TXT.


Lederman, N. G. (2007). Nature of science: past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831-879): Lawrence Erlbaum Associates // g1, CSC, g6, g7, g8.


Lee, M.-H., Johanson, R. E., & Tsai, C.-C. (2007). Exploring Taiwanese high school students’ conceptions of and approaches to learning science through a structural equation modeling analysis. Science Education, 92(2), 191-220 // g6, CTL.


European countries. *Journal of Research in Science Teaching, 44*(2), 349-374 // g8, C, P.


Lin, C.-C., & Tsai, C.-C. (2008). Exploring the structural relationships between high school students' scientific epistemological views and their utilization of information commitments toward online science information. *International Journal of Science Education, 30*(15), 2001-2022 // g6, CSC.


Linn, M. C. (2008). Teaching for conceptual change: Distinguish or extinguish ideas. In S. Vosniadou (Ed.), *International handbook of research on conceptual change* (pp. 694-722). New York: Routledge // g1, CC, g7, MMEDIA.

Liu, S.-Y., & Tsai, C.-C. (2008). Differences in the scientific epistemological views of undergraduate students. *International Journal of Science Education, 30*(8), 1055-1073 // g6, CSC.


imagination": Art and science. *International Journal of Science Education*, 30(8), 793-806 // g6, CSC.


Marks, R., & Eilks, I. (2008). Kommunikations- und Bewertungskompetenz entwickeln in


Michail, S., Stamou, A., & Stamou, G. (2007). Greek primary school teachers' understanding of current environmental issues: An exploration of their environmental knowledge and images of nature. Science Education, 91(2), 244-259 // g8, B, ECOLOGY, CSC.


Möllering, J. (2008). Methode und Ergebnisse eines problemzentrierten Interviews. Chimica et ceterae artes rerum naturae didacticae, 34(101), 100-126 // g6, C,


Muller, D. A., & Sharma, M. D. (2007). Raising cognitive load with linear multimedia to promote conceptual change. Science Education, 92(2), 278-296 // g1, COSC, CON, CC, g7, P, M, FORCE, MMEDIA.


Nieswandt, M., & Shanahan, M.-C. (2008). "I just want the credit!" - Perceived instrumentality as the main characteristics of boys’ motivation in a grade 11 science course. *Research in Science Education, 38*(1), 3-30 // g7, AFF.


Orion, N., & Ault, J. C. R. (2007). Learning earth science. In S. K. Abell & N. G. Lederman (Eds.), *Handbook of research on science education* (pp. 653-687): Lawrence Erlbaum Associates // g1, g6, g7, ES.


Park Rogers, M., A., & Abell, S., K. (2008). The design, enactment, and experience of
inquiry-based instruction in undergraduate science education: A case study. Science Education, 92(4), 591-607 // g7, INQUIRY, LPRO, g8, CTL.


Pozzer-Ardenghi, L., & Roth, W.-M. (2007). On performing concepts during science lectures. Science Education, 91(1), 96-114 // g1, g7, B, HUMAN, GESTURES, NON-VERBAL, DISCOURSE, VIDEO.

Priemer, B. (2006). Deutschsprachige Verfahren der Erfassung von epistemologischen Überzeugungen. Zeitschrift für Didaktik der Naturwissenschaften, 12, 159-176 // g1, g5, GC, CSC, INQUIRY.


Prokop, P., Prokop, M., & Tunnicliffe, S. (2008). Effects of keeping animals as pets on
children’s concepts of vertebrates and invertebrates. *International Journal of Science Education, 30*(4), 431-450 // g6, B, BIODIV.


Reinfried, S. (2006). Conceptual change in physical geography and environmental
sciences through mental model building: The example of groundwater. *International Research in Geographical and Environmental Education, 15*(1), 41-61 // g7, ES.


Roehrig, G. H., & Garrow, S. (2007). The impact of teacher classroom practices on student achievement during the implementation of a reform-based chemistry curriculum. *International Journal of Science Education, 29*(14), 1789-1812 // g7,
C, INQUIRY.


perspective. Research in Science Education, 37(3), 291-312 // g7, B, LIFE.
conceptions of chemicals. International Journal of Science Education, 30(1), 33-
64 // g8, CSC, CTL, AFF.
Salminen-Karlsson, M. (2007). Girls' groups and boys' groups at a municipal technology
centre. International Journal of Science Education, 29(8), 1019-1034 // g7,
INFORMAL, AFF, GEN.
through inquiry in kindergarten. Science Education, 92(5), 868-908 // g7, B, GDD,
INQUIRY.
in science education: Current perspectives and recommendations for future
directions. Science Education, 92(3), 447-472 // g1, ARGUMENTATION.
informal learning environments. International Journal of Science Education,
29(10), 1209-1229 // g7, B, BIODIV, INFORMAL.
about teaching and learning science? Journal of Chemical Education, 85(2), 297-
302 // g7, C, INQUIRY.
Savinainen, A., & Viiri, J. (2008). The force concept inventory as a measure of students’
conceptual coherence. International Journal of Science and Mathematics
Education, 6(4), 719-740 // g6, P, M, FORCE, GC.
Scantlebury, K., & Baker, D. (2007). Gender issues in science education research:
Remembering where the difference lies. In S. K. Abell & N. G. Lederman (Eds.),
Handbook of research on science education (pp. 257-285). Mahwah: Lawrence
Erlbaum Associates // g1, GEN.
ein internationaler Vergleich. Zeitschrift für Didaktik der Naturwissenschaften, 14,
125-143 // g1.
of students’ activities in an out-of-school hands-on gene technology lesson. International Journal of Science Education, 30(4), 451-468 // g7, B, GEN,
INFORMAL.
control-groups for empirical control purposes: a cautionary story in science
education research. Electronic Journal of Science Education, 11(1) // g5, g7, B,
GENETICS, LAB.
Kompetenz. Zeitschrift für Didaktik der Naturwissenschaften, 12, 45-66 // g1.
in 'learning skills for science' practice: The use of portfolios in an evidence-based
continuous professional development programme. International Journal of
Science Education, 30(5), 643-668 // g8, CTL, GC, CSC.
20-23 // g6, ES.


Sevian, H., & Gonsalves, L. (2008). Analysing how scientists explain their research: A rubric for measuring the effectiveness of scientific explanation. *International Journal of Science Education, 30*(11), 1441-1467 // g5, g6, g7, CSC, EXPLANATION.


research on conceptual change (pp. 560-582). New York: Routledge // g1, CC, COSC, AFF, CTL.


Starauschek, E. (2006). Der Einfluss von Textkohäsion und gegenständlichen externen piktoralen Repräsentationen auf die Verständlichkeit von Texten zum Physiklernen. Zeitschrift für Didaktik der Naturwissenschaften, 12, 127-158 // g1, g7, B, TXT, MMEDIA.


Tal, T., & Morag, O. (2007). School visits to natural history museum: Teaching or


Tobin, K. (2008). In search of new lights: getting the most from competing perspectives. *Cultural Studies of Science Education, 3*(2), 227-230 // g1, CC.


Treagust, D. F., & Duit, R. (2008). Compatibility between cultural studies and conceptual change in science education: there is more to acknowledge than to fight straw men! *Cultural Studies of Science Education, 3*(2), 387-395 // g1, CC.


conceptual change: Preservice elementary teachers' conceptions of moon phases. *Journal of Research in Science Teaching, 44*(2), 303-326 // g7, g8, P, AS.

Tsai, C.-C. (2007). Teachers' scientific epistemological views: The coherence with instruction and students' views. *Science Education, 91*(2), 222-243 // g7, g8, CSC, CTL.


van Eijck, M., & Roth, W.-M. (2007). Keeping the local local: Recalibrating the status of science and traditional ecological knowledge (TEK) in education. *Science Education, 91*(6), 926-947 // g1, SCON, ACTTH, B, ECOLOGY.


through scaffolded inquiry. *International Journal of Science Education, 29*(11), 1387-1410 // g7, B, GENETICS, STS, DISCOURSE, ARGUMENTATION, CSC.


Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigation. *Science Education, 92*(5) // g1, MODEL, INQUIRY, g8, CTL.


Wu, Y.-T., & Tsai, C.-C. (2007). High school students' informal reasoning on a socio-scientific issue: Qualitative and quantitative analyses. *International Journal of Science Education, 29*(9), 1163-1187 // g6, EN, STS, GC.


Yilmaz, H., & Huyugüzel Cavas, P. (2008). The effect of the teaching practice on pre-
service elementary teachers’ science teaching efficacy and classroom management beliefs. Eurasia Journal of Mathematics, Science and Technology Education, 4(1), 45-54 // g8, CTL, AFF.


